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Mean Value
Theorem

Let Q C R™ be open and u € C?(Q).

For all x € Q,
"L 0%
Au(z) = E @(x)

j=1 "1

We say that w is harmonic in Q if Au(z) =0 for all x € €.
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Theorem
Let  C R™ be open and u € Li (). The following

loc

Mean Value

flceen conditions are equivalent:
(i). The function u belongs to C%(Q2) and Au = 0 in Q.

(ii). For almost every xy € 2 and almost every r > 0 such
that B, (xo) € ), we have that

u(zg) = ]ﬁB ( )u(a:) dHI L.
r(Z0

(iii). For almost every xo € 2 and almost every r > 0 such
that B, (z9) € 2, we have that

u(zo) = ]{57-(560) u(z) dz.
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Proof of the Mean Value Theorem

If u satisfies either (ii) or (iii), it is actually C*°(Q), since it
Mo Vel coincides with its mollification wu,,.
Theorem For instance, if (ii) holds,

un(z) = /B () u(z — ) dy

n

n
= / [/ o (per) u(z — pw) dHL ™| dp
o |Jom,

[ e 0B, per) uw)] do

0

u@) [ mwdy
= u(z).

(The proof if (iii) can be done by reducing to (ii)).




Mean Value n—1
Theorem ap (f u(pw) de )
dB1

= Vu(pw) - wdHE ™
0B

Hence, since we know already that u is continuous (actually, smooth),

][ u(z) dHy " = lim u(x) dHy " = u(0).
8B,

0/,
[ aB,



Proof (ii)=(iii)

Mean Value
Theorem Use polar coordinates:

u(z) de = / / x)dHy ! dp
£, =1 ) L, |

Ayt w "t
= f, (708 w0 dp = T B [t

_ H"H(9B1) u(0) "
|Bl‘ rn

= u(0).



= (i)

Mean Value
Theorem

Use that u is smooth, a Taylor expansion and odd cancellations:

— lim /(Vu(())-x+%D2u(O)xv:r+O(|ﬂc|3)> dz

™0 |B| 2

= - 2
- l\02|Blrn+2/l<Zau )mld:ﬁ—&—O(r)

= const Au(0).
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D Question: Does the mean value formula characterize the
eorem . . . . . e

domain? If every harmonic function in {2 satisfies the mean
value formula, then is it 2 necessarily a ball?

Epstein (1962), Epstein and Schiffer (1965), Goldstein and
Wellington (1971), Kuran (1972).
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Mean Value

Theorem Let Q) be an open subset of R" containing the origin and with
the property that

for all functions w that are harmonic in Q.
Then, Q2 is a ball.
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Proof of Kuran Theorem

Up to a dilation, we suppose B1 C 2 and there exists y € (0B1)
Let us consider the “Poisson Kernel”

jz|* — 1
|z —y["
By inspection, h is harmonic in R™ \ {y}, h(0) =0 and h > 1 in R™ \ B;.

Therefore
][ hx RS / h(z) dz
‘Q| Q\ By

1 1
|Q| <|B1|h( )+ /gz\B1 ) da:) ] Q\ B hlw)dz

S 2\ Bi]
- B

N (09).

Converse h({B) =

Mean Value
Theorem
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Qs

Theorem
Converse

Mean Value The solution of

Theorem

has the form
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Malmheden Theorem

A “geometric argument” to construct harmonic functions in a
ball with given boundary datum.

Au=0 in By,
u=f on 0B;.

Malmheden
Theorem

@ consider a point P in the ball,

@ take an arbitrary chord passing through P and calculate
the value at P of the linear function that interpolates the
values of f at the endpoints of the chord,

@ compute the average of these values over all possible
chords through P.

This procedure produces the harmonic function in the ball with
datum f on the boundary.
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Malmheden Theorem

Given P € By and e € 9By, let Q%' (e) and QT (e) (or, for
short, @+ (e) and Q_(e)) be the intersection between the
straight line of direction e passing through P and 0B, that is

Malmheden

Qi(e) = P+ri(e)e
and Q-(e)=P+r_(e)e,

where ri(e):=—P-e++/De),
with D(e):= (P-e)? — |P|* + 1.
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Malmheden Theorem

Let /. be the affine function on P + ¢R such

that £o(Q—(e)) = f(Q—(e)) and £c(Q+(e)) = f(Q+(e)).

F(Q+(e)) = F(Q-(€))s +7+(e)f(Q-(e)) = - (€) f(Q+(¢))

re(©) —r_(0)

le(P+se) = <

Take the average over e:
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(' Malmheden Theorem
Qs

Theorem (Malmheden)

Malmheden This u is the solution of the Dirichlet problem in the ball:

Theorem

Au =0 in Bl,
u=f on OB;.
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Malmheden Theorem

Note that Malmheden Theorem contains the Mean Value
Theorem as a special case, by taking P := 0: indeed,
when P =0,

Qi(e) =P+ryi(e)e,
Malmheden (

Theorem Qf 6) = P + T_— (e) 6,

ri(e):=—P-e++/D(e)

D(e):=(P-e)?> - |PP*+1






(e) + f(=e)

OB 2

A =

which is the Mean Value Theorem.
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Proof of Malmheden Theorem

The proof relies on some useful “change of variable” formulas on the
sphere:
Malmheden For every continuous function g : R" — R,

Theorem

(1) /BB g(w)dH " :/83 7 (Qs(w) 1_|1§§7}£Z>(Z)P_wdﬂz‘l.
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Proof of Malmheden Theorem

Thus, using (1), applied with g(e) := ZATIPR ang (2),

_ FQ-(e) A=|PP)
U(P) - ]iBl 1— |P|2 _ (P . 6)7‘,(6) dHe

_ (Q-(e)) (1 —|P*) (=r—(e)" n—1
Malmheden B 9B, ‘P - Q_(e)|n 1- ‘P|2 - (P : €)T_ (6) dHﬁ

Theorem (—7’7 (6))” n—1
1., 9@ T pr e

f gle) dHr?
OB

= Md%:il.
o, P —el"

The integrand is precisely the Poisson Kernel of the ball, hence u is the

solution of the Dirichlet problem.
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It only remains to prove (1).
This relies on the following observations: First, for every w € 9B; we have
that

- (3) |det DQx ()| = +— \ngj;%i)(i)zﬁ-w'

Theorem

Also, there is a “spherical change of variable formula” for a
diffeomorphism @Q of Bg \ B, such that Q(0B,) = 0B, for each p € [r, R]:

4 /BB g(w) dH ! :/ g(Q(w)) |det DQ(UJ)M’HZ*.

9B



Proof of Malmheden Theorem

It only remains to prove (1).
This relies on the following observations: First, for every w € 9B; we have
that

s 3) |det DQx ()] = 7= \ngj;%i)(i)Pw'

Theorem

Also, there is a “spherical change of variable formula” for a
diffeomorphism @Q of Bg \ B, such that Q(0B,) = 0B, for each p € [r, R]:

4 /BB g(w) dH ! :/ g(Q(w)) |det DQ(UJ)M’HZ*.

9B

Note that (1) follows directly from (3) and (4).
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Proof of Malmheden Theorem

To prove (4): use the classical change of variable z := Q(y) to find

R

[ sz =t e ans | do
8B, R® —rm [, 8B,
Malmheden _ n / ( x )
eorem - n n g Tl dm
b R —r Br\B, ||

n Q(y) )
= g det DQ(y)| dy
e Syt (00 12 D@0

=R /TR [/B 7~ ((atoay) 1964 Dt 27 dp.

Then, pick R :=1+¢ and r := 1 and take the limit as € Y\, 0 to obtain (4).
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We are left with the proof of (3):
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Recall

QR+(w)=P+ri(w)w, r+(w)=—P- -wx+/D(w)
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Proof of Malmheden Theorem

We are left with the proof of (3):

@)
1—|P2—ri(w)P-w’

| det DQ+ (w)]

Recall
QR+(w)=P+ri(w)w, r+(w)=—P- -wx+/D(w)
and  D(w):= (P -w)’—|P]*+1.

This is just careful linear algebra.

Up to a rotation, we can suppose that the points O, P and P + w lie in
the plane {x3 = --- =z, = 0}. Also, up to a further rotation in this
plane, we can suppose that w = e;. Thus,

Qi(w+eer) =01+ E)(Qi,1(61),Qi72(61),0, .. ,O).

Consequently,

0 Q=(w) = (Qx1(e1),Qx2(e1),0,...,0).



Proof of Malmheden Theorem

Also, |w + sej| =le; + sej| = 1+ o(e), therefore

Q4 (w +eej)
w + €e;
= (14o0(e)Qy | ———
\w+6ej\
- Py (ﬂ)ﬂh)(s)
Malmheden ‘WJ"ESJ‘ |w+€€J|
Theorem . N 5
w+ e w + e
= P4+ |-pP. "7 4 p. 1" —|P|2 +1 (w +e€) + o(e)
‘W+55j‘ \w+se_j\

= P+ (—P c(wteej) £ \/(P c(w +EEj))2 — |P|2 + 1) (w +eej) + o(e)

= P+<7P-wfsP-eJ:t\/(P<w)2+25(P-w)(P»ej)f|P\2+1> (@ + ce;) + o(e)

e(P-e1)(P-ej)
-t <_P‘el —ePrejE(Pre)? — P2 4+1% NG \Pl‘;+1) (erees)
+o(e).



Proof of Malmheden Theorem

Taking the first order in €, we find that

0;Q+(w) = ajer +ri(er)ey,
where
o e P-ej'ri(el)
! VD(e1)
These observations lead to
Malmheden
fhecen Qt,1(e1) Qi 2(e1) 0 0 0 0
ag r4(er) 0 0 0 0
as 0 r4(er) 0 0 0
ay 0 0 ry(er) 0 0
DQy (w) = as 0 0 0 r4(e1) 0
an 0 0 0 0 S ry(e1)

and therefore

®) | det DQ (w)] = |r (e1)" 2 det (Qi;;z(el) Q@géf;)) ‘ .
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We also note that
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(i\/(P»el)27\P\2+1,P-62,0,..4,0>
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Malmheden
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Proof of Malmheden Theorem

We also note that

Qile) = (Pre1,Pres0,.., 0)+(71)'61:E\/(P»el)2*|P|2+1>€1
(i\/(P»el)27\P\2+1,P-62,0,..4,0>
(i\/D(el),P-eg,O,A..,O>

and consequently

det (Qi,l(el) Qi,2(51)) _ (r&(e1))? '
oz rx(e1) (r£(e1))? + P-erriler)

Since
(re(e1)’ +P-errs(er) =1—|P|® = (P e1)rs(er),

we arrive at

det (Qi,l(el) Qi,2(51>) _ (r4(e1))? ‘
2 re(e) ) 1 |P2 (P en)ri(er)
Thus, retaking (5),
(re(e)”

e PO TP — (P eraten)

Checking the positivity of the latter term, we obtain (3).
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(' The two-dimensional case

A particular case of Malmheden Theorem is when n = 2.

Y

Schwarz
Theorem

Qy)

For this, for every y € 9B C R?, let Q"' (1), or for short Q(y),

be defined by 20P—y)-y
= _— P —_ .
Qy) =y Ve (P—y)



(' The two-dimensional case

Theorem (Schwarz)
Let n =2 and

u(P) = F(QWw)) dH,,.
0B1

Schwarz
Theorem

This u is the solution of the Dirichlet problem in the ball:

Au=0 in Bl,
u=f on OB;.
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A beautiful application of Schwarz Theorem is the
determination of the temperature of a plate in which the
boundary temperature is kept to 1 along an arc of
circumference and to 0 along the rest of the boundary.
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(' The two-dimensional case

A beautiful application of Schwarz Theorem is the
determination of the temperature of a plate in which the
boundary temperature is kept to 1 along an arc of
circumference and to 0 along the rest of the boundary.

Schwarz
Theorem

That is, if the temperature is 1 along an arc X and 0 on the
rest of the circumference, can you tell me the temperature at a
point P of the disk only using elementary geometry?
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Schwarz
Theorem

Answer: one projects the arc X through the focal point P
obtaining a “conjugated arc” ¥’. Then, the temperature at P
is exactly equal to the length of ¥/ divided by 2.




(' The two-dimensional case

Schwarz
Theorem

Answer: one projects the arc X through the focal point P
obtaining a “conjugated arc” ¥’. Then, the temperature at P
is exactly equal to the length of ¥/ divided by 27. Indeed this
is the content of Schwarz Theorem when f := yx.
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If Schwarz Theorem held true we would have that the

Schwarz function u(P) given by the surface area of the spherical cap
obtained by projecting ¥ through the point P would be

harmonic.



(' The two-dimensional case

We stress that Schwarz Theorem only holds in the plane.

Indeed, if n > 3, let ¥ := 0By N {x, < 0} be the lower

halfsphere and f := xx.

If Schwarz Theorem held true we would have that the

Schwarz function u(P) given by the surface area of the spherical cap
obtained by projecting ¥ through the point P would be

harmonic.

But this cannot be true.




Proof of Schwarz Theorem

Schwarz
Theorem

Indeed, if e € (0,1) and P = (0,...,0,1 — ¢) then (by
trigonometry or “dimensional analysis”) we would have
that u(P) ~ " L.




Schwarz
Theorem

Indeed, if e € (0,1) and P = (0,...,0,1 — ¢) then (by
trigonometry or “dimensional analysis”) we would have
that u(P) ~ "~ !. Therefore

aVu(o"”’l):h{%u(O,...,O,l—Ei—u((),...,O,l) _0,
€

against Hopf Lemma.




Proof of Schwarz Theorem

Note that Q(Q+(e)) = Qx(e).

Schwarz
Theorem




Note that Q(Q+(e)) = Qx(e).
By (1) applied with g(w) := f(Q(w)),

F(Qw)) dH, = ][ g(w) dH

oB1 9By

- ][aB 9(Q-(@)) (r_(w)) —

= Jom, 1- |P|2 r—(w)P
_ . (r-(w))? .
- o8, f(Q+( )) 1— |P‘2 r_(w)P«wdH“’

2ry (W) (r-(w))?

= Jon, ) = @ a e
_ " 2r_(w) 1
- 831 f(Q"r( )) 7‘+ (w) —r_ ((U) dHun

which is the harmonic function constructed in Malmheden Theorem.
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Fractional Laplacian

What is the Laplacian?
Multiplication by |£|? in the “frequency space”.
If F is the Fourier transform,

u(@) = [ Fu(§) e dg
R™
Fractional 871;](;1?) = /n Zé_] ]:U(é-) € Edé-
Malmheden
Theorem
0%u .
—(@)=— [ & Fu(f) " de.

6.%'] Rn



Fractional Laplacian

What is the Laplacian?
Multiplication by |£|? in the “frequency space”.
If F is the Fourier transform,

u(@) = [ Fu(§) e dg
R™
ou » .
Fractional axj (x) = /n Zé_] ]:U(é-) € Edé-
Malmheden
Theorem
a2u 2 ix-
073(9”) == [ & Ful©) & de.

Au= }'_1<]£|2}'u).



Fractional Laplacian

A “better way"” to look at the Laplacian:
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Fractional Laplacian

A “better way"” to look at the Laplacian:
comparing with local averages.

1
lim - / w(x) —u(y) | dy = —CAu(zx).
liy s, (u6e) —u(w) (x)
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Fractional Laplacian

What is the fractional Laplacian?
Given a (nice) u: R™ - R and s € (0,1),

(—A)Yulz) = é /n 2u(x) — U(Ty;fgs— u(x —vy) dy
~ lim ulz) —uly)

n+2s
eNO Jrm\B.(z) |T —y["T
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Fractional Laplacian

What is the fractional Laplacian?
Given a (nice) u: R™ - R and s € (0,1),

(—A)Yulz) = é /n 2u(x) — U(Ty;fgs— u(x —vy) dy

u(z) — u(y)

= lim dy.
eN\O Jrm\B_(z) |7 — y["T28
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Fractional Laplacian

What is the fractional Laplacian?
Given a (nice) u: R™ - R and s € (0,1),

(—A)Yulz) = é /n 2u(x) — U(Ty;fgs— u(x —vy) dy

u(z) — u(y)

= lim y’n—l—QS

dy.
e\0 R7\ B. () ‘:L‘—

Fractional
Malmheden
Theorem

(—A)u(z) = FH(|E* Fu(€)).

is a nonlocal diffusive operator.



Fractional Laplacian

As the classical Laplacian, the fractional Laplacian tends to
“average out” oscillations.

Fractional
Malmheden
Theorem




Fractional Laplacian

As the classical Laplacian, the fractional Laplacian tends to
“average out” oscillations.

Differently from the classical Laplacian, the fractional Laplacian

Fractional takes into account the “global” behaviour of the functions.
almheden

Theorem



Fractional Laplacian

Strong interest from the theoretical point of view

@ harmonic analysis,
@ singular integrals,

o fractional calculus,

Fractional

Malmheden o pseudodifferential operators...
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...and in view of concrete applications

finance,

engineering,
elasticity,

quantum mechanics,
fluid mechanics,
phase transitions,
materials sciences,

biology...



Fractional Laplacian

Fractional
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...and in view of concrete applications

finance,

engineering,
elasticity,

quantum mechanics,
fluid mechanics,
phase transitions,
materials sciences,

biology...

Models:

boundary (lower dimensional) effects,

long-range interactions.



Probability:

@ stochastic processes with “long jumps” (Lévy flights),

@ classical processes at “discrete times” (stroboscopic
lamps),

o classical processes at a “lower dimensional set” (trace

Fractional
Malmheden theory)_

Theorem
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Probability:

Brownian walk
(random) = N
May 3 f

Lévy flight

e




Probability:

E.g. in an integer lattice hZ", jumping from hk to hk in time
step h2° occurs with probability density proportional to

1
|k ‘ n+2s’
Fractional
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Probability:

E.g. in an integer lattice hZ", jumping from hk to hk in time
step h2° occurs with probability density proportional to

1
|k‘n+23'

Fractional
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Polynomial, rather than exponential, tail.



Probability:

Trace/boundary stochastic processes.
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An s-harmonic function

Theorem

For any z € R, let ws(z) := x’. = max{z,0}*. Then

CANS L (o —cslz|™* ifz <O,
(6) (—A)’wgy(x) { o 2> 0,
Mamheden

Theorem for a suitable constant c¢g > 0.




First, we show that

@) /01 (1+t)5+(1t)52dt+/l+°° (1+t)sdt:£

t1+25 t1+25 s
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First, we show that

1 s s
@) /0(1+t)+(1 t) 2dt+/l (§+t) 5t — i

t1+25

Indeed, given € > 0, we integrate by parts:

/1 (1+t)5+(1—t)3—2dt

[1]

t1+2s
d o
= —-= 1 t)° 17t372]—t S dt
Fractional / + ) dt
Theorem L[(4e)+(1-e° -2 .
= —2°4+2
2s g2s
1 1 s—1 _ _ 4\s—1
+;/ () N
2 R t25

= ?15 [o(1) — 2° + 2] + % (/:(1 ) M /:(1 —)" T dt)




Moreover, by changing variable # :=¢/(1 — t),

1 +oo
/(14)87%72%:/ (14D di,

/(1—¢)
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Moreover, by changing variable # :=¢/(1 — t),

1 +oo
/(14)87%72%:/ (14D di,

/(1—¢)
thus
E = i[o(l)—23+2]
2s
1 ! 1 t sflt72s dt teo 1 t s—1 725d
Fractional +§ ( + ) B ( + ) t t
Malmheden € e/(1—¢)
Theorem 1

= —lo(1)—2°+2
2s [0( ) + ]
e/(1—¢) +o0
+% [/ (14) "> at —/ (L4t)*"he> dt}
€ 1



Also, since

e/(1—¢)
/ 1+t "t dt
€
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Also, since

e/(1—¢) e/(1—¢)
/ A+t "% dt < / (A+e) e at
1> 1>
— 82725(1_6)71(14_6)5717

we have
e/(1—¢)
lim (1+8)* " dt = 0.
N0 e
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Also, since

e/(1—¢) e/(1—¢)
/ A+t "% dt < / (A+e) e at
€ £

— 82725(1_6)71(14_6)5717

we have
e/(1—¢)
lim (1+8)* " dt = 0.
N0 e
Therefore N
- —2°+2 1/ OO s—1,-2s
Fractional == — — = 1+t t dt.
ol % 2f, 010

Theorem




Also, since

e/(1—¢) e/(1—¢) 1 —o
/ A+t "% dt < / (A+e) e at
€ £

— 82725(1_6)71(14_6)5717

we have
c/(1-e)
lim (1+8)* " dt = 0.
N0 c
Therefore N
=_ —2°+2 1/ < s—1,—2s
Treimel E=_- T2 - 141"t dt.
Fratonal s a)y |

Theorem

Now, integrating by parts,

+00(1Jrit)é‘*lzf*%‘dt S +oot*%i(lﬂ)é‘dt
1 T2 ), dt



Therefore,

1 s _ s _ _9s
/ A+ +(1=t)"=2 =242
0

t1+23 2s

proving (7).
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Now, we claim that

(8)
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Now, we claim that
(8) (—A)%ws(1) = 0.
the function t — (14 ¢)° + (1 —¢)° — 2 is even, therefore

1 s s 1 s s
A+t +(1—8)°—2 (141 +(1—t)°—2
/ R at=2 | == dt.

—1
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Now, we claim that
(8) (—A)%ws(1) = 0.
the function t — (14 ¢)° + (1 —¢)° — 2 is even, therefore

1 s s 1 s s
A+t +(1—8)°—2 (141 +(1—t)°—2
/ R at=2 | == dt.

—1

Fractional Moreover, by changing variable  := —t,

Malmheden
Theorem 1 ~
- (1—t)8—2dt_ +°°(1+1t)3—2dt~
e T e
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Therefore,

/+°° ws(1+1) +ws(1 —t) — 2w5(1)

- e
2/01 — t1+25_t)s_2dt+2/1+w%dt
= 2{E+ tl‘ii) dt_2/1+oo tl‘is}

+oo
$ 11+2s
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ot 1
1 ti+2s T 2g’
we obtain that

T we (14 1) + ws(1 —t) — 2ws(1)
|t‘1+25

dt = 0,
Fractional -
Malmheden

Theorem that is (8)



Moreover,

ws(—1+ 1) + ws(—1 —t) — 2ws(=1) = (=1 + )5 + (=1 = )5 >0

and not identically zero,
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Moreover,
ws(—1+ 1) + ws(—1 —t) — 2ws(=1) = (=1 + )5 + (=1 = )5 >0
and not identically zero, which gives that

(9) —(=A)*ws(—1) > 0.
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Now, we let o € {+1,—1} denote the sign of a fixed z € R\ {0}.
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Now, we let o € {+1,—1} denote the sign of a fixed z € R\ {0}.
claim that

/+°° ws(o(1+1)) + ws(o(1 —t)) — 2ws (o) dt

|t‘1+28

—o0

dt.

[T ws (o4 t) +ws(o —t) — 2w (o)
= [e[i+2s

— 00
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Now, we let o € {+1,—1} denote the sign of a fixed z € R\ {0}. We
claim that

/+°° ws(o(1+1)) + ws(o(1 —t)) — 2ws (o) dt

10) . [e[1+2s

( _ /+°° ws(o+ 1) + ws(o —t) — 2ws(o) it
-/ [e[i+2s :

Indeed, the formula above is obvious when 2 > 0 (i.e. ¢ = 1), so we
suppose x < 0 (i.e. 0 = —1) and we change variable 7 := —:
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Now, we let o € {+1,—1} denote the sign of a fixed z € R\ {0}. We

T ws (014 1) +ws (o (1 — 1)) — 2ws(0)

dt

T we(o 4+ t) + ws(o —t) — 2ws(o)

|t‘1+28

s dt.

Indeed, the formula above is obvious when 2 > 0 (i.e. ¢ = 1), so we
suppose x < 0 (i.e. 0 = —1) and we change variable 7 := —:

+oo wg(o(1+1t)) +ws(o(l —1t)) —2ws(o) at

o0 we (=1 — 1) + we (=1 + £) — 2w, (o)

thus checking (10).

|t‘1+2s

dt

[t|1+2s

too ws(Z1+7) +ws(=1—7) —2ws(o)
-

|r|1+2s

+oo wgs(o+ 1)+ ws(o —7) — 2ws (o)
dr,

|r|1+2s




Now we use a scaling argument:
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Now we use a scaling argument: for any r € R,

That is

Fractional
Malmheden
Theorem

ws(|alr) = (Je|r)3 = [a*rL = [z ws (r).

ws(zr) = ws(o|z|r) = |z ws(or).




Now we use a scaling argument: for any r € R,
ws(|z|r) = (Jz[r)3 = [2*r] = [z ws(r).
That is
ws(zr) = ws(o|z|r) = |z ws(or).

So we change variable y = tz and we obtain that

/+<>0 ws(z + y) + ws(z — y) — 2ws(x) a
|2 !

—oo

_ [t ws(z(1 4 1) + ws(x(1 — t)) — 2ws(x) a
7/ \z|25\t|1+25

—oo

t

Fractional = |o|=* /+°° ws (o (1 +1t)) +ws(o(l —t)) — 2ws(o) d
Malmheden J_ m1+2s
Theorem

_ _s [T ws(o+1t) +ws(o —t) — 2ws (o) at
= |z| mEEET .

—oo



Now we use a scaling argument: for any r € R,
ws(|z|r) = (Jz[r)3 = [2*r] = [z ws(r).
That is
ws(zr) = ws(o|z|r) = |z ws(or).

So we change variable y = tz and we obtain that

/+<>0 ws(z + y) + ws(z — y) — 2ws(x) a
|2 !

—oo

_ /+°° ws (@ +1) + ws(2(1 — 1)) — 2ws(2)

— oo \z|25\t|1+25
Fractional = |o|=* /+°° ws (o (1 +1t)) +ws(o(l —t)) — 2ws(o) dt
Malmheden - J_ [t|1+2s

Theorem

_ _s [T ws(o+1t) +ws(o —t) — 2ws (o) at
= |z| mEEET .

—oo

Thus,
s x| 7 (—A) ws(—1)  ifx <O,
(=A) ws(@) = { 2|5 (=A)*w, (1) ifz >0,

hence (6) follows from (8) and (9).
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All functions are s-harmonic:

We say that w is s-harmonic in  if (=A)*u =0 in Q.

An arbitrary function can be approximated arbitrarily well in a
given ball by functions whose fractional Laplacian vanishes in
such ball,
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Er
A All functions are s-harmonic:

We say that w is s-harmonic in  if (=A)*u =0 in Q.

An arbitrary function can be approximated arbitrarily well in a
given ball by functions whose fractional Laplacian vanishes in
such ball, in sharp contrast with the rigidity of classical

Fractional . .
e harmonic functions.

Theorem



s an
A All functions are s-harmonic:

S. Dipierro, O. Savin, E. Valdinoci (2017)

Fix k € N. Then, given any function u € C*(B;) and
any € > 0, there exist R. > 1 and u. € H*(R"™) N C*(R"™) such
that

(—A)Sus =0 in Bl,
Malmheden . 0 . Rn B
Theorem us - n \ R:

and ||u—u€”0k(31) <e.

Fractional
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Er
A All functions are s-harmonic:
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Sketch of the proof:

By Stone-Weierstrass Theorem,
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Sketch of the proof:

By Stone-Weierstrass Theorem, it suffices to prove the result
for polynomials.
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Sketch of the proof:

By Stone-Weierstrass Theorem, it suffices to prove the result
for polynomials. Hence, from now on, we suppose that

u(z) = ik
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B8 B8

A Sketch of the proof:

Core Lemma:

Fractional
Malmheden
Theorem




B8 B8

A Sketch of the proof:

Core Lemma: spanning the derivative of a function.
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B8 B8

A Sketch of the proof:

Core Lemma: spanning the derivative of a function.

There exists a function v such that

(—=A)°v=0 in By,

D%v(0) =0 for all « € N with |a| < |5] — 1,

sl D%v(0) =0 for all @ € N with |a| = |5| and a # 3,
(0)=1

Theorem Dﬂv 0
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A Sketch of the proof:

Proof of the Core Lemma in 1D:
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Sketch of the proof:

Proof of the Core Lemma in 1D:

Let Z be the set of functions v such that (=A)%v =0
in (—=r,7).
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Let Z be the set of functions v such that (—A)%v
in (—r,r). Forany v € Z, let

Fractional
Malmheden
Theorem




Sketch of the proof:

Proof of the Core Lemma in 1D:

Let Z be the set of functions v such that (=A)%v =0
in (—r,r). Forany v € Z, let

Fractional
Malmheden Let

Theorem V = {Dﬂﬂ(o) s.t. v e Z}



Sketch of the proof:

Proof of the Core Lemma in 1D:

Let Z be the set of functions v such that (=A)%v =0
in (—r,r). Forany v € Z, let

Fractional
Malmheden Let

Theorem V = {Dﬂﬂ(o) s.t. v e Z}

Notice that V' C RA*! is a vector space.



Sketch of the proof:

Proof of the Core Lemma in 1D:

Let Z be the set of functions v such that (=A)%v =0
in (—r,r). Forany v € Z, let

Fractional
Malmheden Let

Theorem V= {Dv(0) sit. v € Z}.
Notice that V' C RA*! is a vector space.
We claim that 1V = RA*!,



B8 B8

A Sketch of the proof:

By contradiction, we suppose that there exists
c = (c;) € RA1\ {0} such that

/B .
g cjv?(0) = 0.
J=0
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B8 B8

A Sketch of the proof:

By contradiction, we suppose that there exists
c = (c;) € RA1\ {0} such that

/B .
g cjv?(0) = 0.
J=0

Choose v(z) := (z +n)%,
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B8 B8

A Sketch of the proof:

By contradiction, we suppose that there exists
c = (c;) € RA1\ {0} such that
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A Sketch of the proof:

By contradiction, we suppose that there exists
c = (c;) € RA1\ {0} such that
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A Sketch of the proof:

Set t:=1/n:
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A Sketch of the proof:

Set t:=1/n:

B
OZZst(s—l)---(s—j—i-l)tj.

=0

Use the Identity Principle of Polynomials
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B8 B8

A Sketch of the proof:

Set t:=1/n:

B
OZZst(s—l)---(s—j—i-l)tj.

=0

Use the Identity Principle of Polynomials and therefore, for
Maimbeen every j € {0,..., 8},

Theorem

cjs(s=1)---(s—j+1)=0,



Sketch of the proof:

Set t:=1/n:

B
OZZst(s—l)---(s—j—i-l)tj.

=0

Use the Identity Principle of Polynomials and therefore, for
Maimbeen every j € {0,..., 8},

Theorem

cjs(s=1)---(s—j+1)=0,

B}

which gives ¢; = 0 for every j € {0,...




Sketch of the proof:
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A Sketch of the proof:

Fractional Wlth |’y| > |6|'
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A Sketch of the proof:

Fractional with |’y| > |6|v we have that
Malmheden

Theorem
(z) = v(ex)
Ul = g
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A Sketch of the proof:

with |y| > |8], we have that
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v(ex)  (ex)P

ue(*) = ZF = grae



B8 B8

A Sketch of the proof:

with |y| > |8], we have that

Fractional
Malmheden

Theorem
B 1Yl B
() = v(ex) _ (ex) ) (”) T O(eM=18l7),

Bl T Bl A

which completes the proof.



Fractional Mean Value Theorem

Theorem
A function u : R™ — R is s-harmonic in B if and only if, for
each r € (0, R),

2

u(0) = ¢(n, s) / r2 u(y)

re\B, (Y% —12)%|y|"

—1
([
e </R"\B1 (Jyl* - 1)s\y|n> -

dy,

Fractional

Malmheden Where

Theorem



Fractional Mean Value Theorem

We define

c(n, s) r? dy
(ly? = r2)*ly["

d:“’r( ) =

and we can interpret p, as a probability measure on R™ \ B,.
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Fractional Mean Value Theorem

We define
c(n, s) r? dy

(ly[> = r2)°[yl|”
and we can interpret p, as a probability measure on R™ \ B,.

Then, the Fractional Mean Value Theorem can be written, for
Fractional Short'

Theorem' u(0) = / u(y) dp(y).
R™\ B,

dpr(y) ==



Fractional Kuran Theorem

in the

The Fractional Mean Value Theorem has an “inverse”,
spirit of Kuran Theorem:

C. Bucur, S. Dipierro, E. Valdinoci (2020)

Let 2 C R™ be a bounded open set, containing the origin,
and r := dist(0, 092).
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Fractional Kuran Theorem

in the

The Fractional Mean Value Theorem has an “inverse”,
spirit of Kuran Theorem:

C. Bucur, S. Dipierro, E. Valdinoci (2020)

Let 2 C R™ be a bounded open set, containing the origin,
and r := dist(0, 092).
Suppose that

Fractional 1
Malmheden 11 u(0) = / u(y) dur(y
Theorem ( ) My (Rn \ 52) R"’\SZ ( ( )

for all s-harmonic functions u in ).
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Fractional Kuran Theorem

in the

The Fractional Mean Value Theorem has an “inverse”,
spirit of Kuran Theorem:

C. Bucur, S. Dipierro, E. Valdinoci (2020)

Let 2 C R™ be a bounded open set, containing the origin,
and r := dist(0, 092).
Suppose that

Fractional 1
Malmheden 11 u(0) = / u(y) dur(y
Theorem ( ) My (Rn \ 52) R"’\SZ ( ( )

for all s-harmonic functions u in ).
Then, Q) = B,..

In short: if Q) satisfies a fractional mean value property with
respect to a suitable measure, then () is necessarily a-ball.



First proof of Fractional Kuran Theorem

By contradiction, assume that 2\ B, # @ and pick p € Q\ B,.
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First proof of Fractional Kuran Theorem

By contradiction, assume that 2\ B, # @ and pick p € Q\ B,.
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First proof of Fractional Kuran Theorem

By contradiction, assume that 2\ B, # @ and pick p € Q\ B,.
Since € is open, there exists p > 0 such that B,(p) C © and
thus

& # By(p)\ B, € O\ B,.
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First proof of Fractional Kuran Theorem

By contradiction, assume that 2\ B, # @ and pick p € Q\ B,.
Since € is open, there exists p > 0 such that B,(p) C © and
thus

&+ B,(p)\ By C 2\ B,.
Therefore,
pr(92\ By) > 0.
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First proof of Fractional Kuran Theorem

By contradiction, assume that 2\ B, # @ and pick p € Q\ B,.
Since € is open, there exists p > 0 such that B,(p) C © and
thus

@ # By(p) \ Br C 2\ B
Therefore,
pr(92\ By) > 0.
Moreover, if u is s-harmonic in © with u(0) =0,

0 = pr(R™\ Q) u(0) = / u(y) dpr(y)

Fractional R7\Q

Malmheden

Theorem -/ 1) ) - [ uwdntw)

Q\B,

= pr(R™\ B,) u(0) — / u(y) dpr (y)

Q\B,



First proof of Fractional Kuran Theorem

Now we use that
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First proof of Fractional Kuran Theorem

Now we use that

, with e := 2, our “favorite function f(z) := |z[?,

and a reference domain Bp, with R := max q [y|.
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First proof of Fractional Kuran Theorem

Now we use that
. 2 p . :
, with € := L=, our “favorite function f(z) := |z,

and a reference domain Bp, with R := max q [y|.

So, we find f, g such that

(—A)sz7R =0 in BR,

742
and 1 = fllzoo(mry < €= -
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First proof of Fractional Kuran Theorem

Now we use that
. 2 p . :
, with € := L=, our “favorite function f(z) := |z,

and a reference domain Bp, with R := max q [y|.

So, we find f, g such that

(—A)sz7R =0 in BR,

742
and 1 = fllzoo(mry < €= -

Fractional
Malmheden
Theorem

Then, we define



First proof of Fractional Kuran Theorem

For all x € Bp,

u*(x) = — frr(@) + f(2) + fr.r(0) = f(0) = f(2) + f(0)

IA I

— f(@) + f(0) + |f(2) = fr.r(@)| + | fr.r(0) — f(0)]
< —z]?+ T;

Hence, for all x € Br \ By,




First proof of Fractional Kuran Theorem

For all x € Bp,

u*(x) = — frr(@) + f(2) + fr.r(0) = f(0) = f(2) + f(0)

IA I

— f(@) + f(0) + |f(2) = fr.r(@)| + | fr.r(0) — f(0)]
< —z]?+ T;

Hence, for all x € Br \ By,




First proof of Fractional Kuran Theorem

Since u*(0) = 0 and (—A)*u*(z) = (—=A)* fr.r(z) =0 for
all z € Bp,

0= —/ u*(y) dur(y) > 0,
Q\B,

Fractional
Malmheden
Theorem

contradiction!



Second proof of Fractional Kuran Theorem

A structurally different proof of the Fractional Kuran Theorem
is based on
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Second proof of Fractional Kuran Theorem

A structurally different proof of the Fractional Kuran Theorem
is based on .

The idea is to suppose for simplicity (after a suitable
approximation) that Q has C'! boundary, and use the
fractional Poisson Kernel:
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Second proof of Fractional Kuran Theorem

A structurally different proof of the Fractional Kuran Theorem
is based on .

The idea is to suppose for simplicity (after a suitable
approximation) that Q has C'! boundary, and use the
fractional Poisson Kernel: we know that the fractional Poisson
Kernel of Br(zg) is

Fractional
Malmheden
Theorem

and if u is s-harmonic in €2 then



A Second proof of Fractional Kuran Theorem

Hence, under assumption (11), for any u € C§°(R™ \ ),

PBT(an) .
/ ) (Mw " Pg<o,y>> dy
1

_ MRTL\Q)/R"\Q u(y) P, (0,y) dy — u(0)

= 0.

Fractional
Malmheden
Theorem



Second proof of Fractional Kuran Theorem

Hence, under assumption (11), for any u € C§°(R™ \ ),

fong 0 (iiori g = o)

o .
= — u(y) Pp, (0,y) dy — u(0
PRI (y) Pp,(0,9) (0)
= 0.
ggfﬂﬁzjlen Hence, by the arbitrariness of u,
PB (O’y)
12 — oy = L0y
(2 e ) ~ 200

fora.e. y e R™\ Q.



Second proof of Fractional Kuran Theorem

This is an identity about fractional Poisson Kernels and we
need to show that it forces () to be the ball B,.
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Second proof of Fractional Kuran Theorem

This is an identity about fractional Poisson Kernels and we
need to show that it forces () to be the ball B,.
Suppose not.
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Second proof of Fractional Kuran Theorem

This is an identity about fractional Poisson Kernels and we
need to show that it forces () to be the ball B,.
Suppose not. The idea is then to choose a point p* € 02, and
p* ¢ OB, and take the limit for y € R™ \ Q to p*:
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A Second proof of Fractional Kuran Theorem

This is an identity about fractional Poisson Kernels and we
need to show that it forces () to be the ball B,.

Suppose not. The idea is then to choose a point p* € 02, and
p* ¢ OB, and take the limit for y € R™ \ Q to p*: the

N right-hand side of (12) will tend to infinity, whereas the
Malmheden left-hand side gives a finite value.

Theorem



Second proof of Fractional Kuran Theorem

The technical details go as follows: take a ball B* C Q\ B,
with (0B*) N ((09) \ B,) # @ and pick a

point p* € (OB*) N ((02) \ B,). We also take a

sequence p; € R™ \ Q such that p; — p* as j — +o0.
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Second proof of Fractional Kuran Theorem
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Second proof of Fractional Kuran Theorem

Let @ := B, U B*. We consider, as a test for our
contradiction, a harmonic function in @ formally corresponding
to a Dirac mass at p;.
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Second proof of Fractional Kuran Theorem

Let @ := B, U B*. We consider, as a test for our
contradiction, a harmonic function in @ formally corresponding
to a Dirac mass at p;.

On the one hand, this function will reproduce the Poisson
Kernel Py (-, p;);
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A Second proof of Fractional Kuran Theorem

Let @ := B, U B*. We consider, as a test for our

contradiction, a harmonic function in @ formally corresponding

to a Dirac mass at p;.

On the one hand, this function will reproduce the Poisson

Kernel P (-, p;); on the other hand, the corresponding average
would converge to a finite value, thus providing the desired

ractional contradiction.

Theorem



A Second proof of Fractional Kuran Theorem

Let @ := B, U B*. We consider, as a test for our

contradiction, a harmonic function in @ formally corresponding

to a Dirac mass at p;.

On the one hand, this function will reproduce the Poisson

Kernel P (-, p;); on the other hand, the corresponding average
would converge to a finite value, thus providing the desired

ractional contradiction.

Theorem The details of the technical argument go as follows. We

take ¢ € C§°(B1,[0,1]), with ¢ even and [, ¢(x)dx = 1.



A Second proof of Fractional Kuran Theorem

Let
Prp(®) = K"p (k(x — p))

and uy , such that

(=A)’upp, =0 inw,
Ukp = Pk p in R" \ w.
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A Second proof of Fractional Kuran Theorem

Let
Prp(®) = K"p (k(x — p))

and uy , such that

(=A)’upp, =0 inw,
Ukp = Pk p in R" \ w.

Fractional

Malmheden Given j, we always suppose that k is large, possibly in
Theorem .
dependence of j, such that

Biyn(pj) C R"\ 0



Second proof of Fractional Kuran Theorem

Given & > 0, we take a smooth bounded open set Q9 that
contains  and such that all points of Q) have distance less
than ¢ from Q.
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Second proof of Fractional Kuran Theorem

Given & > 0, we take a smooth bounded open set Q9 that
contains  and such that all points of Q) have distance less
than § from €.

We take 4 sufficiently small (possibly in dependence of k

and j), such that

Fractional Bl/k) (p]> - Rn \ Q((;) N
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A Second proof of Fractional Kuran Theorem

Given & > 0, we take a smooth bounded open set Q9 that
contains  and such that all points of Q) have distance less
than § from €.

We take 4 sufficiently small (possibly in dependence of k

and j), such that

Fractional Bl/k) (p]> - Rn \ Q((;) N
Malmheden
Theorem

We take uy p, 5 to be the fractional harmonic function
coinciding with ¢y, ;. outside Q).




Second proof of Fractional Kuran Theorem

We claim that
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Second proof of Fractional Kuran Theorem

We claim that
Ukp;,6 = Uk,p;-

Indeed, up,; 5 > 0, by Maximum Principle.
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A Second proof of Fractional Kuran Theorem

We claim that
Ukp;,6 = Uk,p;-

Indeed, Uk, p;.6 > 0, by Maximum Principle. Hence,

since ugp, = ¢kp; = 0 in (R"\ @) N (R™\ Byi(py)), it
follows that the claim holds true at least

in (R"\ @) N (R™\ By i(p;)) 2 (R \ @) N QO
Fractional
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A Second proof of Fractional Kuran Theorem

We claim that
Ukp;,6 = Uk,p;-

Indeed, Uk, p;.6 > 0, by Maximum Principle. Hence,

since ugp, = Qg p, = 0 in (R™\ @) N (R™\ By i(p;)), it
follows that the claim holds true at least

in (R™\ @) N (R™\ By(p;)) 2 (R"\ @) N Q.

hactiona] Since, by construction, it holds true in R™ \ Q) it holds true

Malmheden
Theorem in Rn \ .




A Second proof of Fractional Kuran Theorem

We claim that
Ukp;,6 = Uk,p;-

Indeed, Uk, p;.6 > 0, by Maximum Principle. Hence,

since ugp, = Qg p, = 0 in (R™\ @) N (R™\ By i(p;)), it
follows that the claim holds true at least

in (R™\ @) N (R \ By (p;)) 2 (R™\ =) N Q).

proctional Since, by construction, it holds true in R\ Q) it holds true
Theorem in Rn \ .

Also, both Uk, p; .6 and Uk, p; are s-harmonic in =, hence the

claim follows from the Maximum Principle.




A Second proof of Fractional Kuran Theorem

Now we claim that

lim Uk p; 6(Y) dpr (y / Php; (Y) dpr (y).-
0—0 Rn\Q P ) ) ]Rn\Q Pi ) )

To this end, we observe that the image of ¢, is [0, k], and
therefore also the image of uy . 5 is [0, k], by Maximum
Principle. Then, since

Malmheden
Theorem

Facions [ s i)
R7\Q

/ Uk,p;,5(y) dpr (y) + / Uk,p;,5(y) dpr(y)
R7\Q(9) Q\Q

/ @rp; (y) dpr(y) + / Uk,p;,5(y) dpr (y),
R7\Q (%)

QN\Q

one obtains the claim by taking the limit.



Second proof of Fractional Kuran Theorem

Therefore,
uk,p; (0) < lim upp, 5(0)

1
=lim—— . .
g IR

Fractional 1

Malmheden = T v\ () / Spk7pj (y) dl’LT (y)
) Jrma

Theorem



A Second proof of Fractional Kuran Theorem

Hence, since 0 € B, C w,

Pw(oap]) = kETOO uk,pj (O)

1
< lim ——— (y) dpy
c(n, s) r

(RN Q) (Ips[? = r2)* s

Fractional
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@

Fractional
Malmheden
Theorem

Second proof of Fractional Kuran Theorem

Hence, since 0 € B, C w,

Po(0,pj) =, im e, (0)

1
< lim — () dp,
<l R /R g P () dpr (y)
c(n, s) r

pr (R Q) (|ps|* = 72)|ps ™

Now, we use the geometry of the fractional Poisson Kernel,
which gives a suitable ¢ := ¢(n, s, @) > 0 such that

¢ (dist(0,9w))”
(dist(pj, 3w)) (1 + dist(p;, 0=

Pellp) = =R




Second proof of Fractional Kuran Theorem

Hence, since p; — p* € 0B* C 0w,

lim P5(0,pj) = 400

J—+o0

Fractional
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Second proof of Fractional Kuran Theorem

Hence, since p; — p* € 0B* C 0w,

lim P5(0,pj) = 400

Jj—+oo
and therefore
. . c(n, s) r2s
X0 = 1m
j=+oo i (R™\ Q) (|py[? — 72)%|ps|™
Fractional 2s
e _ cln,)r
pr (R Q) (|p*[? — r2)s|p*|™
< +00,

since p* € R" \E contradiction.



Fractional Malmheden Theorem

A “geometric argument” to construct s-harmonic functions in a
ball with given “boundary” datum.

(—A)u=0 in By,
uw=f in R"\ By.

Fractional
Malmheden
Theorem



Fractional Malmheden Theorem

To establish a fractional counterpart of Malmheden Theorem
one needs the following structural modifications:
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Fractional Malmheden Theorem

To establish a fractional counterpart of Malmheden Theorem
one needs the following structural modifications:

o the classical spherical averages are replaced by suitable
weighted spherical averages,
Fractional
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Fractional Malmheden Theorem

To establish a fractional counterpart of Malmheden Theorem
one needs the following structural modifications:

o the classical spherical averages are replaced by suitable
weighted spherical averages,

Fractional @ the geometric transformations involved are scaled in
eIt etten dependence of the radius of each of these spheres.

Theorem



Fractional Malmheden Theorem

Setting:

fola) = f(pz),
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Fractional Malmheden Theorem

Setting:

fole) = f(pz),

E?’b(m) := the affine function such that
£7"(a) = f(a) and L3"(b) = £(b),
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Fractional Malmheden Theorem

Setting:

folz) = f(pz),
E?’b(m) := the affine function such that
£7"(a) = f(a) and L3"(b) = £(b),

Fractional z/p z/p
almheden Q7 "(e),Q (e) [z
i Lrpla) =] OE (2]




Fractional Malmheden Theorem

Qi(e)=P+ryi(e)e, re(e) == —P-e++/D(e),
D(e) := (P -e)* — |P|* + 1.
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Fractional Malmheden Theorem

Let us also consider the following kernel for the ball B,,.
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Fractional Malmheden Theorem

Let us also consider the following kernel for the ball B,,.
Given s € (0,1), let

_ p(1—|zf?)®
E(x,p) == cn,s (p2 — 1) (p2 — |z[2)
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Fractional Malmheden Theorem

Let us also consider the following kernel for the ball B,,.
Given s € (0,1), let

_ p(1—|zf?)®
E(x,p) == cn,s (p2 — 1) (p2 — |z[2)

Fractional where
Malmheden F(n/2> Sin(ﬂ's)

Theorem

Cn.s =
n,8 r(n+2)/2
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Fractional Malmheden Theorem

Theorem (S. Dipierro, G. Giacomin, E. Valdinoci)

£f(’p(r) S(ZI’ p) d’}_[:l—l dp
0B1

Eractional Then, u is the solution of the fractional Dirichlet problem in
Malmheden the ball:

(—A)Su =0 in B1,
u=f in R™ \ By.



Fractional Malmheden Theorem

When P =0,
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Fractional Malmheden Theorem

When P = 0, we have that D(e) =1, r4(e) = +1 and
Q+(e) = te.
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Fractional Malmheden Theorem

When P = 0, we have that D(e) =1, r4(e) = +1 and
Q+(e) = +e. Hence,

Q% (e),Q% () —e,e
Liep(0) =Ly T(0) = L£,7°(0) = +
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Fractional Malmheden Theorem

When P = 0, we have that D(e) =1, r4(e) = +1 and
Q+(e) = +e. Hence,

Q% (e),Q% () —e,e
Liep(0) =Ly T(0) = L£,7°(0) = +

Fractional

Malmheden AlSO,
Theorem p CTL,S

E0,p) =cns = )
9:2) (P*=1pp*  (p*=1)°p




Thus, the Fractional Malmheden Theorem reduces to

+o0
/ [ Lfep(0) EO,p)dHI™| dp
1 0By
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Thus, the Fractional Malmheden Theorem reduces to

w0 = [ Lran0 0] ap

[ i (574 252
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Thus, the Fractional Malmheden Theorem reduces to

w0 = [ Lran0 0] ap

[ i (574 25

[ i (55
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Thus, the Fractional Malmheden Theorem reduces to

w0 = [ Lran0 0] ap

+oo Cn,s f(pe) f(—p6)> d n1:| d
[ s (552 + 522 o] 0
Feo Cn,s f(w > i 1 d
Fractional /1 [/83P (p? = 1)%p" < 2 e ]

el (o >) "
re\B; ( \y|2—1 Elylm 2




Fractional Malmheden Theorem

Thus, the Fractional Malmheden Theorem reduces to
“+oc0
u(0) = / [ L1ep(0) £(0, p) d?—[?l] d
1 9B

[ i (574 25

e Cns Flw) f(w)) ]
Fractional a /1 [/33p (P2 - 1)8,0" < 2 T 2 %w P

el (),
re\B; ( \y|2—1 Elylm 2 2

f(y)
= Cn,s dya
/R”\Bl ly|"(ly[* = 1)

which is the Fractional Mean Value Theorem.




Fractional Malmheden Theorem

Also, when s 1, the Fractional Malmheden Theorem
recovers the classical one.

Fractional
Malmheden
Theorem




Proof of Fractional Malmheden Theorem

Once we “guess” the right formula, the proof relies on a series
of identities due to the geometry of the projections.
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Proof of Fractional Malmheden Theorem

Once we “guess” the right formula, the proof relies on a series
of identities due to the geometry of the projections.
Sketch:

@ Start with the representation of the s-harmonic function
in Bj via the
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Proof of Fractional Malmheden Theorem

Once we “guess” the right formula, the proof relies on a series
of identities due to the geometry of the projections.
Sketch:

@ Start with the representation of the s-harmonic function
in Bj via the

@ This produces an integral outside By, which can be

written in
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Proof of Fractional Malmheden Theorem

Once we “guess” the right formula, the proof relies on a series
of identities due to the geometry of the projections.
Sketch:

@ Start with the representation of the s-harmonic function
in Bj via the

@ This produces an integral outside By, which can be
written in

Feiional o After some scaling, one can recognize the function £ as a
Malmheden
Theorem



Proof of Fractional Malmheden Theorem

Once we “guess” the right formula, the proof relies on a series
of identities due to the geometry of the projections.
Sketch:

@ Start with the representation of the s-harmonic function

in Bj via the
@ This produces an integral outside By, which can be
written in
Fractional o After some scaling, one can recognize the function £ as a

Malmheden
Theorem

@ Name whatever remains g and apply to it the




Proof of Fractional Malmheden Theorem

Once we “guess” the right formula, the proof relies on a series
of identities due to the geometry of the projections.
Sketch:

@ Start with the representation of the s-harmonic function

in Bj via the
@ This produces an integral outside By, which can be
written in
Fractional o After some scaling, one can recognize the function £ as a

Malmheden
Theorem

@ Name whatever remains g and apply to it the

@ Rearrange the terms and



Fractional Schwarz Theorem

Theorem (S. Dipierro, G. Giacomin, E. Valdinoci)
Let n =2 and
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Fractional Schwarz Theorem

Theorem (S. Dipierro, G. Giacomin, E. Valdinoci)

Let n =2 and

wo) = [ [ [, 5@ o) ant] ap

Then, u is the solution of the fractional Dirichlet problem in
the ball:

Fractional
Schwarz
Theorem

(—A)Su =0 in B1,
u=f in R™ \ By.



Fractional Schwarz Theorem

When s 1, the Fractional Schwarz Theorem recovers the
classical one.
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Fractional Schwarz Theorem

When s 1, the Fractional Schwarz Theorem recovers the
classical one.

Also, let 3 be an arc in the circle 9B; C R? and X, be the
cone generated by ¥, i.e.

5, = {m eR"\ {0} st. — € 2}.

||
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Schwarz
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Fractional Schwarz Theorem

When s 1, the Fractional Schwarz Theorem recovers the
classical one.

Also, let 3 be an arc in the circle 9B; C R? and X, be the
cone generated by ¥, i.e.

5, = {m eR"\ {0} st. — € z}.

||

Consider the solution of the fractional Dirichlet problem in the
ball with conical exterior datum:

Fractional

Sch _ S, — H

e (=A)’'u=0 in By,
u=xx, in R™\ By.

Do we have a geometric way to represent such a solution?



Fractional Schwarz Theorem
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Fractional Schwarz Theorem

Yes. Let E;/p be the projected arc of ¥ on 0B through the
point x/p.
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Fractional Schwarz Theorem

Yes. Let E;/p be the projected arc of ¥ on 0B through the
point x/p.

Let \E;/p\ be its length.

Then, the Fractional Schwarz Theorem yields that

+o0o
u(z) /1 |E;/p| E(x, p)dp.
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Fractional Schwarz Theorem

Yes. Let E;/p be the projected arc of ¥ on 0B through the
point x/p.

Let \E;/p\ be its length.

Then, the Fractional Schwarz Theorem yields that

+o0o
u(z) /1 |E;/p| E(x, p)dp.

That is, u is a superposition of scaled arc lengths, weighted by
a the kernel &.
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Fractional Schwarz Theorem

Yes. Let E;/p be the projected arc of ¥ on 0B through the
point x/p.

Let \E;/p\ be its length.

Then, the Fractional Schwarz Theorem yields that

+o0o
u(z) /1 |E;/p| E(x, p)dp.

That is, u is a superposition of scaled arc lengths, weighted by
a the kernel £.
Fractional In particular,

Schwarz
Theorem

%]

o’

+oo
u0) =121 [ £0.p)dp



Proof of Fractional Schwarz Theorem

Use the Fractional Malmheden Theorem with n = 2 and check
the algebra.

Fractional
Schwarz
Theorem




(A Superposition Theorem

As a byproduct of the Malmheden Theorem and the Fractional
Malmheden Theorem, we see that an s-harmonic function is
the superposition of classical harmonic functions.

Superposition
Theorem




(A Superposition Theorem

Theorem (S. Dipierro, G. Giacomin, E. Valdinoci)

For each p > 1 be uy, be the unique solution to the classical
Dirichlet problem in the ball

AU,fp =0 in Bl,
uf, = f,  on OB;.

Superposition
Theorem



(A Superposition Theorem

Theorem (S. Dipierro, G. Giacomin, E. Valdinoci)

For each p > 1 be uy, be the unique solution to the classical
Dirichlet problem in the ball

AU,fp =0 in Bl,
uf, = f,  on OB;.

Then, the solution of the fractional Dirichlet problem in the ball
(=A)*u=0 in By,
u=f in R™\ Bj.

can be written as

Superposition

+o0 €T
Theorem u(;L‘) = ’aBl‘ / ufp <p> g(l/p) d,{)
1



Fractional Harnack Inequality

As a consequence of the Superposition Theorem, we have a
new proof of the Fractional Harnack Inequality (see e.g.
M. KaBmann's thesis), with optimal constants:

Theorem

If w is s-harmonic in By, then, for each r € (0,1) and x € B,,

(1—7r2)®

== =y

u(0).

Fractional
Harnack
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Fractional Harnack Inequality

As a consequence of the Superposition Theorem, we have a
new proof of the Fractional Harnack Inequality (see e.g.
M. KaBmann's thesis), with optimal constants:

Theorem

If w is s-harmonic in By, then, for each r € (0,1) and x € B,,

(1—7r2)®

(1—7r2)®
o (=od

u(0) < u(e) < T

u(0).

The constants above are optimal, and for s /1 they converge
to the optimal constants of the classical Harnack inequality in
B, for harmonic functions in Bj.

Fractional
Harnack
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Proof of Fractional Harnack Inequality

Applying the Harnack inequality for classical harmonic functions to uy,, we

ur,(0) < wa (E) :

have that

L—|z[/p p
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Proof of Fractional Harnack Inequality

Applying the Harnack inequality for classical harmonic functions to uy,, we
have that

(+lzl/p)" " (=
w0 < D (2).

From this, the Malmheden Theorem and the Fractional Malmheden
Theorem we obtain that

where t :=

* 1 (A+fal/p)"! (m>
0) < cp,s|0B / —]d
U( )_C ‘ 1| 1 p(pg_l)s Ufp p P

L—lzl/p

_ |8Bl|/°° £z, p) (P = |=[*) (p+ )" s, <g> dp

p? (1 —|z[?)* pn=2(p — |2[)
o s by o )

p

— 108l [ e ato.tyus, (£) an

|z| and

_ ()"
g(p,t) == (=)



Proof of Fractional Harnack Inequality

Since g(p, t) is decreasing in p and increasing in ¢, we have that

a4+
e = sup g(p;t).
(I =72) (el oo x[0,r]

Therefore, it follows from (13) that

u0) <105 I [T e, (2) ap= FED o),

which establishes one side of the Fractional Harnack Inequality.
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Proof of Fractional Harnack Inequality

To prove the other side, use again the Harnack inequality for harmonic

B\ o A4l
. (5) < e o

functions:

p
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Proof of Fractional Harnack Inequality

To prove the other side, use again the Harnack inequality for harmonic

functions: 2l
T 1+ |x|/p
u — | < ———ur (0
«(5) < i
Therefore,
* uy,(0)
w(0) = c¢ps|0OB / —r
(©) 1951 L o=
= 1 (1—lz|/p)" "} (w>
> cn.s|OB =)d
ol 1'/1 P21 1+lzlp \p) Y

o (p—kdﬁ‘l (m)
= cn,saB/ uﬂ - d
OB | i e ey e )
N
OBl [ S Ty e )
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Proof of Fractional Harnack Inequality

Hence, if
(p—t)"

t) (= ———
gl(p7 ) pn(l_tg)sa

we have that

(14) ) 2 81| [ £ pan(prt) s, (g) ap.
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Proof of Fractional Harnack Inequality

Hence, if

_ _(p=0"
gl(pvt) = pn(l — tg)sa
we have that
(14) u(0) 08| | EWWMNAUum(%)dﬂ
1

Since g, is increasing in p, for all (p,t) € [1,00) x [0, 7],

#(0.t) 2 (1,0 = G = U = el
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Proof of Fractional Harnack Inequality

Hence, if

_ _(p=0"
gl(pvt) = pn(l — tg)sa
we have that
(14) u(0) 08| | EWWMNAUum(%)dﬂ
1

Since g, is increasing in p, for all (p,t) € [1,00) x [0, 7],

#(0.t) 2 (1,0 = G = U = el

Since also g2 is decreasing, for all (p,t) € [1,00) x [0, 7],

g1(p,t) > ga(r) = (1(1_:)737 N ((11—_:2);'
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Proof of Fractional Harnack Inequality

Plugging this information into (14),

O 2108 {05 [ e, (£) doz =Dnu),

which is the other side of the Fractional Harnack Inequality.
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=) Optimality of the constants in the Fractional
Harnack Inequality

Let € € (0,1). Then,

1— 2\s
ue(z) = Cn,s / % dy
JB((e+1)e) ly — x|

is s-harmonic in Bj.
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=) Optimality of the constants in the Fractional

Harnack Inequality

Let € € (0,1). Then,

1— 2\s
ue(z) = Cn,s / % dy
JB((e+1)e) ly — x|

is s-harmonic in Bj.
Let x = —re for r € (0,1): we have that

/ dy
us(0) Be((e+)e) Y™

ue(—re) / (1 77“2)5 ’

dy
(etye) [y + el
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=) Optimality of the constants in the Fractional

Harnack Inequality

Let € € (0,1). Then,

1— 2\s
ue(z) = Cn,s / % dy
JB((e+1)e) ly — x|

is s-harmonic in Bj.
Let x = —re for r € (0,1): we have that

/ dy
us(0) Be((e+)e) Y™

ue(—re) / (177‘2)Sd ’

((et1ye) [y F el

whence
u:(0) _ (1+7m)"

=0 ue(—re) (1 —7r2)s’

showing the optimality of the constants.
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A Thanks a lot for your attention!
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