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Harmonic functions

Let Ω ⊆ Rn be open and u ∈ C2(Ω).

For all x ∈ Ω,

∆u(x) :=

n∑
j=1

∂2u

∂x2j
(x).

We say that u is harmonic in Ω if ∆u(x) = 0 for all x ∈ Ω.
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The Mean Value Theorem

Theorem

Let Ω ⊆ Rn be open and u ∈ L1
loc(Ω). The following

conditions are equivalent:

(i). The function u belongs to C2(Ω) and ∆u = 0 in Ω.

(ii). For almost every x0 ∈ Ω and almost every r > 0 such
that Br(x0) ⋐ Ω, we have that

u(x0) =

 
∂Br(x0)

u(x) dHn−1
x .

(iii). For almost every x0 ∈ Ω and almost every r > 0 such
that Br(x0) ⋐ Ω, we have that

u(x0) =

 
Br(x0)

u(x) dx.
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Proof of the Mean Value Theorem

If u satisfies either (ii) or (iii), it is actually C∞(Ω), since it
coincides with its mollification uη.
For instance, if (ii) holds,

uη(x) :=

�
Bη

τη(y)u(x− y) dy

by polar coordinates =

� η

0

[�
∂Bρ

τη(ρe1)u(x− ρω) dHn−1
ω

]
dρ

by (ii) =

� η

0

[
Hn−1(∂Bρ)τη(ρe1)u(x)

]
dρ

by polar coordinates = u(x)

�
Bη

τη(y) dy

= u(x).

(The proof if (iii) can be done by reducing to (ii)).
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Proof (i)⇒(ii)

Take x0 := 0.

∂ρ

( 
∂Bρ

u(x) dHn−1
x

)
= ∂ρ

( 
∂B1

u(ρω) dHn−1
ω

)
=

 
∂B1

∇u(ρω) · ω dHn−1
ω

=
1

Hn−1(∂B1)

�
∂Bρ

∇u(x) · ν(x) dHn−1
x

by Divergence Theorem =
1

Hn−1(∂B1)

�
Bρ

∆u(x) dx

= 0.

Hence, since we know already that u is continuous (actually, smooth),
 
∂Br

u(x) dHn−1
x = lim

ρ↘0

 
∂Bρ

u(x) dHn−1
x = u(0).
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Proof (ii)⇒(iii)

Use polar coordinates:

 
Br

u(x) dx =
1

|Br|

� r

0

[�
∂Bρ

u(x) dHn−1
x

]
dρ

=
1

|Br|

� r

0

[
Hn−1(∂Bρ) u(0)

]
dρ =

Hn−1(∂B1) u(0)

|B1| rn

� r

0

ρn−1 dρ

=
Hn−1(∂B1) u(0) r

n

|B1| rn n
= u(0).



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 8/114

Proof (iii)⇒(i)

Use that u is smooth, a Taylor expansion and odd cancellations:

0 = lim
r↘0

1

r2

 
Br

(
u(x)− u(0)

)
dx

= lim
r↘0

1

|Br| r2

�
Br

(
∇u(0) · x+

1

2
D2u(0)x · x+O(|x|3)

)
dx

= lim
r↘0

1

2 |B1| rn+2

�
Br

(
n∑

i=1

∂2
i u(0)

)
x2
i dx+O(r)

= const∆u(0).
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Kuran Theorem

Question: Does the mean value formula characterize the
domain? If every harmonic function in Ω satisfies the mean
value formula, then is it Ω necessarily a ball?

Epstein (1962), Epstein and Schiffer (1965), Goldstein and
Wellington (1971), Kuran (1972).



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 9/114

Kuran Theorem

Question: Does the mean value formula characterize the
domain? If every harmonic function in Ω satisfies the mean
value formula, then is it Ω necessarily a ball?

Epstein (1962), Epstein and Schiffer (1965), Goldstein and
Wellington (1971), Kuran (1972).



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 9/114

Kuran Theorem

Question: Does the mean value formula characterize the
domain? If every harmonic function in Ω satisfies the mean
value formula, then is it Ω necessarily a ball?

Epstein (1962), Epstein and Schiffer (1965), Goldstein and
Wellington (1971), Kuran (1972).



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 10/114

Kuran Theorem

Theorem

Let Ω be an open subset of Rn containing the origin and with
the property that

u(0) =

 
Ω
u(x) dx

for all functions u that are harmonic in Ω.
Then, Ω is a ball.
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Proof of Kuran Theorem

Up to a dilation, we suppose B1 ⊂ Ω and there exists y ∈ (∂B1) ∩ (∂Ω).
Let us consider the “Poisson Kernel”

h(x) :=
|x|2 − 1

|x− y|n + 1.

By inspection, h is harmonic in Rn \ {y}, h(0) = 0 and h ≥ 1 in Rn \B1.
Therefore

0 = h(0) =

 
Ω

h(x) dx =
1

|Ω|

(�
B1

h(x) dx+

�
Ω\B1

h(x) dx

)

=
1

|Ω|

(
|B1|h(0) +

�
Ω\B1

h(x) dx

)
=

1

|Ω|

�
Ω\B1

h(x) dx

≥ |Ω \B1|
|B1|

.



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 11/114

Proof of Kuran Theorem

Up to a dilation, we suppose B1 ⊂ Ω and there exists y ∈ (∂B1) ∩ (∂Ω).
Let us consider the “Poisson Kernel”

h(x) :=
|x|2 − 1

|x− y|n + 1.

By inspection, h is harmonic in Rn \ {y}, h(0) = 0 and h ≥ 1 in Rn \B1.
Therefore

0 = h(0) =

 
Ω

h(x) dx =
1

|Ω|

(�
B1

h(x) dx+

�
Ω\B1

h(x) dx

)

=
1

|Ω|

(
|B1|h(0) +

�
Ω\B1

h(x) dx

)
=

1

|Ω|

�
Ω\B1

h(x) dx

≥ |Ω \B1|
|B1|

.



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 11/114

Proof of Kuran Theorem

Up to a dilation, we suppose B1 ⊂ Ω and there exists y ∈ (∂B1) ∩ (∂Ω).
Let us consider the “Poisson Kernel”

h(x) :=
|x|2 − 1

|x− y|n + 1.

By inspection, h is harmonic in Rn \ {y}, h(0) = 0 and h ≥ 1 in Rn \B1.
Therefore

0 = h(0) =

 
Ω

h(x) dx =
1

|Ω|

(�
B1

h(x) dx+

�
Ω\B1

h(x) dx

)

=
1

|Ω|

(
|B1|h(0) +

�
Ω\B1

h(x) dx

)
=

1

|Ω|

�
Ω\B1

h(x) dx

≥ |Ω \B1|
|B1|

.



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 11/114

Proof of Kuran Theorem

Up to a dilation, we suppose B1 ⊂ Ω and there exists y ∈ (∂B1) ∩ (∂Ω).
Let us consider the “Poisson Kernel”

h(x) :=
|x|2 − 1

|x− y|n + 1.

By inspection, h is harmonic in Rn \ {y}, h(0) = 0 and h ≥ 1 in Rn \B1.
Therefore

0 = h(0) =

 
Ω

h(x) dx =
1

|Ω|

(�
B1

h(x) dx+

�
Ω\B1

h(x) dx

)

=
1

|Ω|

(
|B1|h(0) +

�
Ω\B1

h(x) dx

)
=

1

|Ω|

�
Ω\B1

h(x) dx

≥ |Ω \B1|
|B1|

.



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 11/114

Proof of Kuran Theorem

Up to a dilation, we suppose B1 ⊂ Ω and there exists y ∈ (∂B1) ∩ (∂Ω).
Let us consider the “Poisson Kernel”

h(x) :=
|x|2 − 1

|x− y|n + 1.

By inspection, h is harmonic in Rn \ {y}, h(0) = 0 and h ≥ 1 in Rn \B1.
Therefore

0 = h(0) =

 
Ω

h(x) dx =
1

|Ω|

(�
B1

h(x) dx+

�
Ω\B1

h(x) dx

)

=
1

|Ω|

(
|B1|h(0) +

�
Ω\B1

h(x) dx

)
=

1

|Ω|

�
Ω\B1

h(x) dx

≥ |Ω \B1|
|B1|

.



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 11/114

Proof of Kuran Theorem

Up to a dilation, we suppose B1 ⊂ Ω and there exists y ∈ (∂B1) ∩ (∂Ω).
Let us consider the “Poisson Kernel”

h(x) :=
|x|2 − 1

|x− y|n + 1.

By inspection, h is harmonic in Rn \ {y}, h(0) = 0 and h ≥ 1 in Rn \B1.
Therefore

0 = h(0) =

 
Ω

h(x) dx =
1

|Ω|

(�
B1

h(x) dx+

�
Ω\B1

h(x) dx

)

=
1

|Ω|

(
|B1|h(0) +

�
Ω\B1

h(x) dx

)
=

1

|Ω|

�
Ω\B1

h(x) dx

≥ |Ω \B1|
|B1|

.



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 12/114

Recall: the Poisson Kernel of the ball
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Recall: the Poisson Kernel of the ball

Theorem

The solution of {
∆u = 0 in B1,

u = f on ∂B1,

has the form

u(x) =

 
∂B1

f(y)
1− |x|2

|x− y|n
dHn−1

y .
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Malmheden Theorem

A “geometric argument” to construct harmonic functions in a
ball with given boundary datum.{

∆u = 0 in B1,

u = f on ∂B1.

consider a point P in the ball,

take an arbitrary chord passing through P and calculate
the value at P of the linear function that interpolates the
values of f at the endpoints of the chord,

compute the average of these values over all possible
chords through P .

This procedure produces the harmonic function in the ball with
datum f on the boundary.
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Malmheden Theorem

Given P ∈ B1 and e ∈ ∂B1, let Q
P
+(e) and QP

−(e) (or, for
short, Q+(e) and Q−(e)) be the intersection between the
straight line of direction e passing through P and ∂B1, that is

Q+(e) = P + r+(e) e

and Q−(e) = P + r−(e) e,

where r±(e) := −P · e±
√

D(e),

with D(e) := (P · e)2 − |P |2 + 1.
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Malmheden Theorem

Let ℓe be the affine function on P + eR such
that ℓe(Q−(e)) = f(Q−(e)) and ℓe(Q+(e)) = f(Q+(e)).

ℓe(P+se) =

(
f(Q+(e))− f(Q−(e))

)
s+ r+(e)f(Q−(e))− r−(e)f(Q+(e))

r+(e)− r−(e)
.

Take the average over e:

u(P ) :=

 
∂B1

ℓe(P ) dHn−1
e .
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Malmheden Theorem

Theorem (Malmheden)

This u is the solution of the Dirichlet problem in the ball:{
∆u = 0 in B1,

u = f on ∂B1.
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Malmheden Theorem

Note that Malmheden Theorem contains the Mean Value
Theorem as a special case, by taking P := 0: indeed,
when P = 0,

Q+(e) = P + r+(e) e,

Q−(e) = P + r−(e) e,

r±(e) := −P · e±
√

D(e)

and D(e) := (P · e)2 − |P |2 + 1

become

D(e) = r+(e) = −r−(e) = 1 and Q±(e) = ±e.
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Therefore

ℓe(0) =
r+(e)f(Q−(e))− r−(e)f(Q+(e))

r+(e)− r−(e)
=

f(e) + f(−e)

2
.

Hence,

u(0) =

 
∂B1

f(e) + f(−e)

2
dHn−1

e =

 
∂B1

f(e) dHn−1
e ,

which is the Mean Value Theorem.
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Proof of Malmheden Theorem

The proof relies on some useful “change of variable” formulas on the
sphere:
For every continuous function g : Rn → R,

(1)

�
∂B1

g(ω) dHn−1
ω =

�
∂B1

g (Q±(ω))
(±r±(ω))

n

1− |P |2 − r±(ω)P · ω dHn−1
ω .
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Proof of Malmheden Theorem

Also,

u(P ) =

 
∂B1

r+(e)f(Q−(e))− r−(e)f(Q+(e))

r+(e)− r−(e)
dHn−1

e

=

 
∂B1

r+(e)f(Q−(e))

r+(e)− r−(e)
dHn−1

e −
 
∂B1

r−(e)f(Q+(e))

r+(e)− r−(e)
dHn−1

e

= 2

 
∂B1

r+(e)f(Q−(e))

r+(e)− r−(e)
dHn−1

e .

(2)

Besides, by a direct computation,

2r+(e)

r+(e)− r−(e)
=

1− |P |2

1− |P |2 − (P · e)r−(e)

and |P −Q−(e)| = −r−(e).
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Proof of Malmheden Theorem

Thus, using (1), applied with g(e) := f(e) (1−|P |2)
|P−e|n , and (2),

u(P ) =

 
∂B1

f(Q−(e)) (1− |P |2)
1− |P |2 − (P · e)r−(e)

dHn−1
e

=

 
∂B1

f(Q−(e)) (1− |P |2)
|P −Q−(e)|n

(−r−(e))
n

1− |P |2 − (P · e)r−(e)
dHn−1

e

=

 
∂B1

g(Q−(e))
(−r−(e))

n

1− |P |2 − (P · e)r−(e)
dHn−1

e

=

 
∂B1

g(e) dHn−1
e

=

 
∂B1

f(e) (1− |P |2)
|P − e|n dHn−1

e .

The integrand is precisely the Poisson Kernel of the ball, hence u is the

solution of the Dirichlet problem.
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Proof of Malmheden Theorem

It only remains to prove (1).
This relies on the following observations: First, for every ω ∈ ∂B1 we have
that

(3) | detDQ±(ω)| =
(±r±(ω))

n

1− |P |2 − r±(ω)P · ω .

Also, there is a “spherical change of variable formula” for a
diffeomorphism Q of BR \Br such that Q(∂Bρ) = ∂Bρ for each ρ ∈ [r,R]:

(4)

�
∂B1

g(ω) dHn−1
ω =

�
∂B1

g (Q(ω)) | detDQ(ω)| dHn−1
ω .

Note that (1) follows directly from (3) and (4).
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Proof of Malmheden Theorem

To prove (4): use the classical change of variable x := Q(y) to find

�
∂B1

g(ω) dHn−1
ω =

n

Rn − rn

� R

r

[�
∂B1

ρn−1g(ω) dHn−1
ω

]
dρ

=
n

Rn − rn

�
BR\Br

g

(
x

|x|

)
dx

=
n

Rn − rn

�
BR\Br

g

(
Q(y)

|Q(y)|

)
| detDQ(y)| dy

=
n

Rn − rn

� R

r

[�
∂B1

ρn−1g

(
Q(ρω)

|Q(ρω)|

)
| detDQ(ρω)| dHn−1

ω

]
dρ.

Then, pick R := 1+ ε and r := 1 and take the limit as ε ↘ 0 to obtain (4).
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Proof of Malmheden Theorem

We are left with the proof of (3):

| detDQ±(ω)| =
(±r±(ω))

n

1− |P |2 − r±(ω)P · ω .

Recall

Q±(ω) = P + r±(ω)ω, r±(ω) = −P · ω ±
√

D(ω)

and D(ω) := (P · ω)2 − |P |2 + 1.

This is just careful linear algebra.
Up to a rotation, we can suppose that the points O, P and P + ω lie in
the plane {x3 = · · · = xn = 0}. Also, up to a further rotation in this
plane, we can suppose that ω = e1. Thus,

Q±(ω + εe1) = (1 + ε)
(
Q±,1(e1), Q±,2(e1), 0, . . . , 0

)
.

Consequently,

∂1Q±(ω) =
(
Q±,1(e1), Q±,2(e1), 0, . . . , 0

)
.
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the plane {x3 = · · · = xn = 0}. Also, up to a further rotation in this
plane, we can suppose that ω = e1. Thus,

Q±(ω + εe1) = (1 + ε)
(
Q±,1(e1), Q±,2(e1), 0, . . . , 0

)
.

Consequently,

∂1Q±(ω) =
(
Q±,1(e1), Q±,2(e1), 0, . . . , 0

)
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Proof of Malmheden Theorem
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Proof of Malmheden Theorem

Also, |ω + εej | = |e1 + εej | = 1 + o(ε), therefore

Q±(ω + εej)

= (1 + o(ε))Q±

(
ω + εej

|ω + εej |

)

= P + r±

(
ω + εej

|ω + εej |

)
ω + εej

|ω + εej |
+ o(ε)

= P +

−P ·
ω + εej

|ω + εej |
±

√√√√(P ·
ω + εej

|ω + εej |

)2

− |P |2 + 1

 (ω + εej) + o(ε)

= P +

(
−P · (ω + εej) ±

√(
P · (ω + εej)

)2 − |P |2 + 1

)
(ω + εej) + o(ε)

= P +

(
−P · ω − εP · ej ±

√
(P · ω)2 + 2ε(P · ω)(P · ej) − |P |2 + 1

)
(ω + εej) + o(ε)

= P +

(
−P · e1 − εP · ej ±

√
(P · e1)2 − |P |2 + 1 ±

ε(P · e1)(P · ej)√
(P · e1)2 − |P |2 + 1

)
(e1 + εej)

+o(ε).
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Proof of Malmheden Theorem

Taking the first order in ε, we find that

∂jQ±(ω) = αje1 + r±(e1)ej ,

where

αj := ∓
P · ej r±(e1)√

D(e1)
.

These observations lead to

DQ±(ω) =



Q±,1(e1) Q±,2(e1) 0 0 0 . . . 0
α2 r±(e1) 0 0 0 . . . 0
α3 0 r±(e1) 0 0 . . . 0
α4 0 0 r±(e1) 0 . . . 0
α5 0 0 0 r±(e1) . . . 0

. . .

αn 0 0 0 0 . . . r±(e1)



and therefore

(5) | detDQ±(ω)| =
∣∣∣∣r±(e1)

n−2
det

(
Q±,1(e1) Q±,2(e1)

α2 r±(e1)

)∣∣∣∣ .
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Proof of Malmheden Theorem

We also note that

Q±(e1) = (P · e1, P · e2, 0, . . . , 0) +

(
−P · e1 ±

√
(P · e1)2 − |P |2 + 1

)
e1

=

(
±
√

(P · e1)2 − |P |2 + 1, P · e2, 0, . . . , 0
)

=

(
±
√

D(e1), P · e2, 0, . . . , 0
)

and consequently

det

(
Q±,1(e1) Q±,2(e1)

α2 r±(e1)

)
=

(r±(e1))
2

(r±(e1))2 + P · e1 r±(e1)
.

Since

(r±(e1))
2
+ P · e1 r±(e1) = 1 − |P |2 − (P · e1)r±(e1),

we arrive at

det

(
Q±,1(e1) Q±,2(e1)

α2 r±(e1)

)
=

(r±(e1))
2

1 − |P |2 − (P · e1)r±(e1)
.

Thus, retaking (5),

| detDQ±(ω)| =

∣∣∣∣∣ (r±(e1))
n

1 − |P |2 − (P · e1)r±(e1)

∣∣∣∣∣ .
Checking the positivity of the latter term, we obtain (3).
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The two-dimensional case

A particular case of Malmheden Theorem is when n = 2.

For this, for every y ∈ ∂B1 ⊂ R2, let QP (y), or for short Q(y),
be defined by

Q(y) := y − 2(P − y) · y
|P − y|2

(P − y).
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The two-dimensional case

A particular case of Malmheden Theorem is when n = 2.
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The two-dimensional case

Theorem (Schwarz)

Let n = 2 and

u(P ) :=

 
∂B1

f(Q(ω)) dH1
ω.

This u is the solution of the Dirichlet problem in the ball:{
∆u = 0 in B1,

u = f on ∂B1.
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The two-dimensional case

A beautiful application of Schwarz Theorem is the
determination of the temperature of a plate in which the
boundary temperature is kept to 1 along an arc of
circumference and to 0 along the rest of the boundary.

That is, if the temperature is 1 along an arc Σ and 0 on the
rest of the circumference, can you tell me the temperature at a
point P of the disk only using elementary geometry?
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The two-dimensional case
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The two-dimensional case

Answer: one projects the arc Σ through the focal point P
obtaining a “conjugated arc” Σ′. Then, the temperature at P
is exactly equal to the length of Σ′ divided by 2π. Indeed this
is the content of Schwarz Theorem when f := χΣ.
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The two-dimensional case

Answer: one projects the arc Σ through the focal point P
obtaining a “conjugated arc” Σ′. Then, the temperature at P
is exactly equal to the length of Σ′ divided by 2π. Indeed this
is the content of Schwarz Theorem when f := χΣ.
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The two-dimensional case

We stress that Schwarz Theorem only holds in the plane.
Indeed, if n ≥ 3, let Σ := ∂B1 ∩ {xn < 0} be the lower
halfsphere and f := χΣ.
If Schwarz Theorem held true we would have that the
function u(P ) given by the surface area of the spherical cap
obtained by projecting Σ through the point P would be
harmonic.
But this cannot be true.
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Proof of Schwarz Theorem

Indeed, if ε ∈ (0, 1) and P = (0, . . . , 0, 1− ε) then (by
trigonometry or “dimensional analysis”) we would have
that u(P ) ≃ εn−1. Therefore

∂νu(0, . . . , 1) = lim
ε↘0

u(0, . . . , 0, 1− ε)− u(0, . . . , 0, 1)

ε
= 0,

against Hopf Lemma.
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Proof of Schwarz Theorem

Note that Q(Q±(e)) = Q∓(e).
By (1) applied with g(ω) := f(Q(ω)),

 
∂B1

f(Q(ω)) dH1
ω =

 
∂B1

g(ω) dH1
ω

=

 
∂B1

g (Q−(ω))
(r−(ω))

2

1− |P |2 − r−(ω)P · ω dH1
ω

=

 
∂B1

f (Q(Q−(ω)))
(r−(ω))

2

1− |P |2 − r−(ω)P · ω dH1
ω

=

 
∂B1

f(Q+(ω))
(r−(ω))

2

1− |P |2 − r−(ω)P · ω dH1
ω

=

 
∂B1

f(Q+(ω))
2r+(ω)(r−(ω))

2

(r+(ω)− r−(ω))(1− |P |2) dH
1
ω

=

 
∂B1

f(Q+(ω))
2r−(ω)

r+(ω)− r−(ω)
dH1

ω,

which is the harmonic function constructed in Malmheden Theorem.
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Fractional Laplacian

What is the Laplacian?
Multiplication by |ξ|2 in the “frequency space”.
If F is the Fourier transform,

u(x) =

�
Rn

Fu(ξ) eix·ξ dξ.

∂u

∂xj
(x) =

�
Rn

iξj Fu(ξ) eix·ξ dξ.

∂2u

∂x2j
(x) = −

�
Rn

ξ2j Fu(ξ) eix·ξ dξ.

−∆u = F−1
(
|ξ|2Fu

)
.
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Multiplication by |ξ|2 in the “frequency space”.
If F is the Fourier transform,

u(x) =

�
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Fu(ξ) eix·ξ dξ.

∂u

∂xj
(x) =

�
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iξj Fu(ξ) eix·ξ dξ.

∂2u
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(x) = −
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−∆u = F−1
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)
.
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Fractional Laplacian

A “better way” to look at the Laplacian:
comparing with local averages.

lim
r↘0

1

rn+2

�
Br(x)

(
u(x)− u(y)

)
dy = −C∆u(x).
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Fractional Laplacian

What is the fractional Laplacian?

Given a (nice) u : Rn → R and s ∈ (0, 1),

(−∆)su(x) =
1

2

�
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy

= lim
ε↘0

�
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy.

(−∆)su(x) = F−1
(
|ξ|2sFu(ξ)

)
.

(−∆)s is a nonlocal diffusive operator.
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Fractional Laplacian

As the classical Laplacian, the fractional Laplacian tends to
“average out” oscillations.

Differently from the classical Laplacian, the fractional Laplacian
takes into account the “global” behaviour of the functions.
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As the classical Laplacian, the fractional Laplacian tends to
“average out” oscillations.

Differently from the classical Laplacian, the fractional Laplacian
takes into account the “global” behaviour of the functions.
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Fractional Laplacian

Strong interest from the theoretical point of view

harmonic analysis,

singular integrals,

fractional calculus,

pseudodifferential operators...
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Fractional Laplacian

...and in view of concrete applications

finance,

engineering,

elasticity,

quantum mechanics,

fluid mechanics,

phase transitions,

materials sciences,

biology...

Models:

boundary (lower dimensional) effects,

long-range interactions.
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Probability:

stochastic processes with “long jumps” (Lévy flights),

classical processes at “discrete times” (stroboscopic
lamps),

classical processes at a “lower dimensional set” (trace
theory).
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Probability:



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 46/114

Probability:

E.g. in an integer lattice hZn, jumping from hk to hk̃ in time
step h2s occurs with probability density proportional to

1

|k|n+2s
.

Polynomial, rather than exponential, tail.
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Probability:

Trace/boundary stochastic processes.
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An s-harmonic function

Theorem

For any x ∈ R, let ws(x) := xs+ = max{x, 0}s. Then

(6) (−∆)sws(x) =

{
−cs|x|−s if x < 0,

0 if x > 0,

for a suitable constant cs > 0.
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Proof

First, we show that

(7)

� 1

0

(1 + t)s + (1− t)s − 2

t1+2s
dt+

� +∞

1

(1 + t)s

t1+2s
dt =

1

s
.

Indeed, given ε > 0, we integrate by parts:

Ξ :=

� 1

ε

(1 + t)s + (1− t)s − 2

t1+2s
dt

= − 1

2s

� 1

ε

[
(1 + t)s + (1− t)s − 2

] d
dt

t−2s dt

=
1

2s

[
(1 + ε)s + (1− ε)s − 2

ε2s
− 2s + 2

]
+
1

2

� 1

ε

(1 + t)s−1 − (1− t)s−1

t2s
dt

=
1

2s
[o(1)− 2s + 2] +

1

2

( � 1

ε

(1 + t)s−1t−2s dt−
� 1

ε

(1− t)s−1t−2s dt

)
.
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Proof

Moreover, by changing variable t̃ := t/(1− t),

� 1

ε

(1− t)s−1t−2s dt =

� +∞

ε/(1−ε)

(1 + t̃)s−1t̃−2s dt̃,

thus

Ξ =
1

2s

[
o(1)− 2s + 2

]
+
1

2

[ � 1

ε

(1 + t)s−1t−2s dt−
� +∞

ε/(1−ε)

(1 + t)s−1t−2s dt

]
=

1

2s

[
o(1)− 2s + 2

]
+
1

2

[ � ε/(1−ε)

ε

(1 + t)s−1t−2s dt−
� +∞

1

(1 + t)s−1t−2s dt

]
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Proof

Also, since

� ε/(1−ε)

ε

(1 + t)s−1t−2s dt ≤
� ε/(1−ε)

ε

(1 + ε)s−1ε−2s dt

= ε2−2s(1− ε)−1(1 + ε)s−1,

we have

lim
ε↘0

� ε/(1−ε)

ε

(1 + t)s−1t−2s dt = 0.

Therefore

Ξ =
−2s + 2

2s
− 1

2

� +∞

1

(1 + t)s−1t−2s dt.

Now, integrating by parts,

1

2

� +∞

1

(1 + t)s−1t−2s dt =
1

2s

� +∞

1

t−2s d

dt
(1 + t)s dt

= −2s

2s
+

� +∞

1

t−1−2s(1 + t)s dt.
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Proof

Therefore,

� 1

0

(1 + t)s + (1− t)s − 2

t1+2s
dt =

−2s + 2

2s
+

2s

2s
−
� +∞

1

t−1−2s(1 + t)s dt,

proving (7).
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Proof

Now, we claim that

(8) (−∆)sws(1) = 0.

the function t 7→ (1 + t)s + (1− t)s − 2 is even, therefore

� 1

−1

(1 + t)s + (1− t)s − 2

|t|1+2s
dt = 2

� 1

0

(1 + t)s + (1− t)s − 2

t1+2s
dt.

Moreover, by changing variable t̃ := −t,

� −1

−∞

(1− t)s − 2

|t|1+2s
dt =

� +∞

1

(1 + t̃)s − 2

t̃1+2s
dt̃.
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Proof

Therefore,

� +∞

−∞

ws(1 + t) + ws(1− t)− 2ws(1)

|t|1+2s
dt

=

� −1

−∞

(1− t)s − 2

|t|1+2s
dt+

� 1

−1

(1 + t)s + (1− t)s − 2

|t|1+2s
dt

+

� +∞

1

(1 + t)s − 2

|t|1+2s
dt

= 2

� 1

0

(1 + t)s + (1− t)s − 2

t1+2s
dt+ 2

� +∞

1

(1 + t)s − 2

t1+2s
dt

= 2

[
Ξ +

� +∞

1

(1 + t)s

t1+2s
dt− 2

� +∞

1

dt

t1+2s

]
= 2

[
1

s
− 2

� +∞

1

dt

t1+2s

]
.
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Proof

Since � +∞

1

dt

t1+2s
=

1

2s
,

we obtain that
� +∞

−∞

ws(1 + t) + ws(1− t)− 2ws(1)

|t|1+2s
dt = 0,

that is (8).
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ws(1 + t) + ws(1− t)− 2ws(1)
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dt = 0,

that is (8).
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Proof

Moreover,

ws(−1 + t) + ws(−1− t)− 2ws(−1) = (−1 + t)s+ + (−1− t)s+ ≥ 0

and not identically zero, which gives that

(9) −(−∆)sws(−1) > 0.
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Proof

Now, we let σ ∈ {+1,−1} denote the sign of a fixed x ∈ R \ {0}. We
claim that
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ws(σ(1 + t)) + ws(σ(1− t))− 2ws(σ)

|t|1+2s
dt

=

� +∞
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ws(σ + t) + ws(σ − t)− 2ws(σ)

|t|1+2s
dt.

(10)

Indeed, the formula above is obvious when x > 0 (i.e. σ = 1), so we
suppose x < 0 (i.e. σ = −1) and we change variable τ := −t:

� +∞
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ws(σ(1 + t)) + ws(σ(1 − t)) − 2ws(σ)

|t|1+2s
dt
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dt

=

� +∞

−∞

ws(−1 + τ) + ws(−1 − τ) − 2ws(σ)
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dτ

=
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ws(σ + τ) + ws(σ − τ) − 2ws(σ)

|τ |1+2s
dτ,

thus checking (10).
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Proof

Now we use a scaling argument: for any r ∈ R,
ws(|x|r) = (|x|r)s+ = |x|srs+ = |x|sws(r).

That is

ws(xr) = ws(σ|x|r) = |x|sws(σr).

So we change variable y = tx and we obtain that

� +∞

−∞

ws(x + y) + ws(x − y) − 2ws(x)

|y|1+2s
dy

=

� +∞

−∞

ws(x(1 + t)) + ws(x(1 − t)) − 2ws(x)

|x|2s|t|1+2s
dt

= |x|−s
� +∞

−∞

ws(σ(1 + t)) + ws(σ(1 − t)) − 2ws(σ)

|t|1+2s
dt

= |x|−s
� +∞

−∞

ws(σ + t) + ws(σ − t) − 2ws(σ)

|t|1+2s
dt.

Thus,

(−∆)sws(x) =

{
|x|−s (−∆)sws(−1) if x < 0,
|x|−s (−∆)sws(1) if x > 0,

hence (6) follows from (8) and (9).
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All functions are s-harmonic:

We say that u is s-harmonic in Ω if (−∆)su = 0 in Ω.

An arbitrary function can be approximated arbitrarily well in a
given ball by functions whose fractional Laplacian vanishes in
such ball, in sharp contrast with the rigidity of classical
harmonic functions.



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 59/114

All functions are s-harmonic:

We say that u is s-harmonic in Ω if (−∆)su = 0 in Ω.

An arbitrary function can be approximated arbitrarily well in a
given ball by functions whose fractional Laplacian vanishes in
such ball, in sharp contrast with the rigidity of classical
harmonic functions.



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 59/114

All functions are s-harmonic:

We say that u is s-harmonic in Ω if (−∆)su = 0 in Ω.

An arbitrary function can be approximated arbitrarily well in a
given ball by functions whose fractional Laplacian vanishes in
such ball, in sharp contrast with the rigidity of classical
harmonic functions.



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 60/114

All functions are s-harmonic:

S. Dipierro, O. Savin, E. Valdinoci (2017)

Fix k ∈ N. Then, given any function u ∈ Ck(B1) and
any ε > 0, there exist Rε > 1 and uε ∈ Hs(Rn) ∩ Cs(Rn) such
that

(−∆)suε = 0 in B1,

uε = 0 in Rn \BRε

and ∥u− uε∥Ck(B1) ≤ ϵ.
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All functions are s-harmonic:
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All functions are s-harmonic:
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All functions are s-harmonic:
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All functions are s-harmonic:
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Sketch of the proof:

By Stone-Weierstrass Theorem, it suffices to prove the result
for polynomials. Hence, from now on, we suppose that

u(x) =
xβ

β!
.
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Sketch of the proof:

Core Lemma: spanning the derivative of a function.

There exists a function v such that

(−∆)sv = 0 in Br,

Dαv(0) = 0 for all α ∈ Nn with |α| ≤ |β| − 1,

Dαv(0) = 0 for all α ∈ Nn with |α| = |β| and α ̸= β,

Dβv(0) = 1.
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Sketch of the proof:

Proof of the Core Lemma in 1D:

Let Z be the set of functions v such that (−∆)sv = 0
in (−r, r). For any v ∈ Z, let

Dβv(0) :=
(
v(0), v′(0), . . . , vβ(0)

)
∈ Rβ+1.

Let
V :=

{
Dβv(0) s.t. v ∈ Z

}
.

Notice that V ⊆ Rβ+1 is a vector space.

We claim that V = Rβ+1.
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Sketch of the proof:

By contradiction, we suppose that there exists
c = (cj) ∈ Rβ+1 \ {0} such that

β∑
j=0

cjv
j(0) = 0.

Choose v(x) := (x+ η)s+, then

0 =

β∑
j=0

cjv
j(0) =

β∑
j=0

cjs(s− 1) · · · (s− j + 1) ηs−j

= ηs
β∑

j=0

cjs(s− 1) · · · (s− j + 1) η−j .
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Sketch of the proof:

Set t := 1/η:

0 =

β∑
j=0

cjs(s− 1) · · · (s− j + 1) tj .

Use the Identity Principle of Polynomials and therefore, for
every j ∈ {0, . . . , β},

cjs(s− 1) · · · (s− j + 1) = 0,

which gives cj = 0 for every j ∈ {0, . . . , β}.
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Sketch of the proof:

Define

uε(x) :=
v(εx)

ε|β|
.

Since

v(x) =
xβ

β!
+O(xγ),

with |γ| > |β|, we have that

uε(x) =
v(εx)

ε|β|
=

(εx)β

β! ε|β|
+O

(
ε|γ|xγ

ε|β|

)
=

xβ

β!
+O

(
ε|γ|−|β|xγ

)
,

which completes the proof.
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Fractional Mean Value Theorem

Theorem

A function u : Rn → R is s-harmonic in BR if and only if, for
each r ∈ (0, R),

u(0) = c(n, s)

�
Rn\Br

r2s u(y)

(|y|2 − r2)s|y|n
dy,

where

c(n, s) :=

(�
Rn\B1

dy

(|y|2 − 1)s|y|n

)−1

.
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Fractional Mean Value Theorem

We define

dµr(y) :=
c(n, s) r2s dy

(|y|2 − r2)s|y|n

and we can interpret µr as a probability measure on Rn \Br.
Then, the Fractional Mean Value Theorem can be written, for
short,

u(0) =

�
Rn\Br

u(y) dµr(y).
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Fractional Kuran Theorem

The Fractional Mean Value Theorem has an “inverse”, in the
spirit of Kuran Theorem:

C. Bucur, S. Dipierro, E. Valdinoci (2020)

Let Ω ⊂ Rn be a bounded open set, containing the origin,
and r := dist(0, ∂Ω).
Suppose that

(11) u(0) =
1

µr(Rn \ Ω)

�
Rn\Ω

u(y) dµr(y)

for all s-harmonic functions u in Ω.
Then, Ω = Br.

In short: if Ω satisfies a fractional mean value property with
respect to a suitable measure, then Ω is necessarily a ball.
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First proof of Fractional Kuran Theorem

By contradiction, assume that Ω \Br ̸= ∅ and pick p ∈ Ω \Br.
Since Ω is open, there exists ρ > 0 such that Bρ(p) ⊂ Ω and
thus

∅ ̸= Bρ(p) \Br ⊂ Ω \Br.

Therefore,
µr(Ω \Br) > 0.

Moreover, if u is s-harmonic in Ω with u(0) = 0,

0 = µr(Rn \ Ω)u(0) =
�
Rn\Ω

u(y) dµr(y)

=

�
Rn\Br

u(y) dµr(y)−
�
Ω\Br

u(y) dµr(y)

= µr(Rn \Br)u(0)−
�
Ω\Br

u(y) dµr(y)

= −
�
Ω\Br

u(y) dµr(y).
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First proof of Fractional Kuran Theorem

Now we use that “all functions are locally s-harmonic up to
an ϵ error”, with ϵ := r2

4 , our “favorite function f(x) := |x|2,
and a reference domain BR, with R := maxy∈Ω |y|.
So, we find fr,R such that

(−∆)sfr,R = 0 in BR,

and ∥fr,R − f∥L∞(BR) ≤ ϵ =
r2

4
.

Then, we define

u⋆(x) := −fr,R(x) + fr,R(0).
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First proof of Fractional Kuran Theorem

For all x ∈ BR,

u⋆(x) = − fr,R(x) + f(x) + fr,R(0)− f(0)− f(x) + f(0)

≤ − f(x) + f(0) + |f(x)− fr,R(x)|+ |fr,R(0)− f(0)|

≤ − |x|2 + r2

2
.

Hence, for all x ∈ BR \Br,

−u⋆(x) ≥ |x|2 − r2

2
≥ r2

2
.

Since Ω ⊂ BR, it follows that

�
Ω\Br

−u⋆(y) dµr(y) ≥
r2

2
µr(Ω \Br) > 0.
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First proof of Fractional Kuran Theorem

Since u⋆(0) = 0 and (−∆)su⋆(x) = (−∆)sfr,R(x) = 0 for
all x ∈ BR,

0 = −
�
Ω\Br

u⋆(y) dµr(y) > 0,

contradiction!
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Second proof of Fractional Kuran Theorem

A structurally different proof of the Fractional Kuran Theorem
is based on potential theory.
The idea is to suppose for simplicity (after a suitable
approximation) that Ω has C1,1 boundary, and use the
fractional Poisson Kernel: we know that the fractional Poisson
Kernel of BR(x0) is

PBR(x0)(x, y) =
c(n, s) (R2 − |x− x0|2)s

(|y − x0|2 −R2)s|x− y|n

and if u is s-harmonic in Ω then

u(x) =

�
Rn\Ω

u(y)PΩ(x, y) dy.
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Second proof of Fractional Kuran Theorem

A structurally different proof of the Fractional Kuran Theorem
is based on potential theory.
The idea is to suppose for simplicity (after a suitable
approximation) that Ω has C1,1 boundary, and use the
fractional Poisson Kernel: we know that the fractional Poisson
Kernel of BR(x0) is

PBR(x0)(x, y) =
c(n, s) (R2 − |x− x0|2)s

(|y − x0|2 −R2)s|x− y|n

and if u is s-harmonic in Ω then

u(x) =
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Second proof of Fractional Kuran Theorem

Hence, under assumption (11), for any u ∈ C∞
0 (Rn \ Ω),

�
Rn\Ω

u(y)

(
PBr(0, y)

µr(Rn \ Ω)
− PΩ(0, y)

)
dy

=
1

µr(Rn \ Ω)

�
Rn\Ω

u(y)PBr(0, y) dy − u(0)

= 0.

Hence, by the arbitrariness of u,

(12)
PBr(0, y)

µr(Rn \ Ω)
= PΩ(0, y)

for a.e. y ∈ Rn \ Ω.
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Second proof of Fractional Kuran Theorem

This is an identity about fractional Poisson Kernels and we
need to show that it forces Ω to be the ball Br.
Suppose not. The idea is then to choose a point p∗ ∈ ∂Ω, and
p∗ /∈ ∂Br and take the limit for y ∈ Rn \ Ω to p∗: the
right-hand side of (12) will tend to infinity, whereas the
left-hand side gives a finite value.
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Second proof of Fractional Kuran Theorem

The technical details go as follows: take a ball B∗ ⊂ Ω \Br

with (∂B∗) ∩ ((∂Ω) \Br) ̸= ∅ and pick a
point p∗ ∈ (∂B∗) ∩ ((∂Ω) \Br). We also take a
sequence pj ∈ Rn \ Ω such that pj → p∗ as j → +∞.
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Second proof of Fractional Kuran Theorem
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Second proof of Fractional Kuran Theorem

Let ϖ := Br ∪B∗. We consider, as a test for our
contradiction, a harmonic function in ϖ formally corresponding
to a Dirac mass at pj .
On the one hand, this function will reproduce the Poisson
Kernel Pϖ(·, pj); on the other hand, the corresponding average
would converge to a finite value, thus providing the desired
contradiction.
The details of the technical argument go as follows. We
take φ ∈ C∞

0 (B1, [0, 1]), with φ even and
�
Rn φ(x) dx = 1.
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Second proof of Fractional Kuran Theorem

Let
φk,p(x) := knφ (k(x− p))

and uk,p such that{
(−∆)suk,p = 0 in ϖ,

uk,p = φk,p in Rn \ϖ.

Given j, we always suppose that k is large, possibly in
dependence of j, such that

B1/k(pj) ⊂ Rn \ Ω.
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(−∆)suk,p = 0 in ϖ,

uk,p = φk,p in Rn \ϖ.

Given j, we always suppose that k is large, possibly in
dependence of j, such that

B1/k(pj) ⊂ Rn \ Ω.



Mean Value
Theorem

Converse
Mean Value
Theorem

Malmheden
Theorem

Schwarz
Theorem

Fractional
Malmheden
Theorem

Fractional
Schwarz
Theorem

Superposition
Theorem

Fractional
Harnack
Inequality 85/114

Second proof of Fractional Kuran Theorem

Given δ > 0, we take a smooth bounded open set Ω(δ) that
contains Ω and such that all points of Ω(δ) have distance less
than δ from Ω.
We take δ sufficiently small (possibly in dependence of k
and j), such that

B1/k(pj) ⊂ Rn \ Ω(δ).

We take uk,pj ,δ to be the fractional harmonic function

coinciding with φk,pj outside Ω(δ).
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Second proof of Fractional Kuran Theorem

We claim that
uk,pj ,δ ≥ uk,pj .

Indeed, uk,pj ,δ ≥ 0, by Maximum Principle. Hence,
since uk,pj = φk,pj = 0 in (Rn \ϖ) ∩ (Rn \B1/k(pj)), it
follows that the claim holds true at least
in (Rn \ϖ) ∩ (Rn \B1/k(pj)) ⊇ (Rn \ϖ) ∩ Ω(δ).

Since, by construction, it holds true in Rn \ Ω(δ), it holds true
in Rn \ϖ.
Also, both uk,pj ,δ and uk,pj are s-harmonic in ϖ, hence the
claim follows from the Maximum Principle.
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Second proof of Fractional Kuran Theorem

Now we claim that

lim
δ→0

�
Rn\Ω

uk,pj ,δ(y) dµr(y) =

�
Rn\Ω

φk,pj (y) dµr(y).

To this end, we observe that the image of φk,pj is [0, k], and
therefore also the image of uk,pj ,δ is [0, k], by Maximum
Principle. Then, since

�
Rn\Ω

uk,pj ,δ(y) dµr(y)

=

�
Rn\Ω(δ)

uk,pj ,δ(y) dµr(y) +

�
Ω(δ)\Ω

uk,pj ,δ(y) dµr(y)

=

�
Rn\Ω(δ)

φk,pj (y) dµr(y) +

�
Ω(δ)\Ω

uk,pj ,δ(y) dµr(y),

one obtains the claim by taking the limit.
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Second proof of Fractional Kuran Theorem

Therefore,

uk,pj (0) ≤ lim
δ→0

uk,pj ,δ(0)

= lim
δ→0

1

µr(Rn \ Ω)

�
Rn\Ω

uk,pj ,δ(y) dµr(y)

=
1

µr(Rn \ Ω)

�
Rn\Ω

φk,pj (y) dµr(y).
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Second proof of Fractional Kuran Theorem

Hence, since 0 ∈ Br ⊂ ϖ,

Pϖ(0, pj) = lim
k→+∞

uk,pj (0)

≤ lim
k→+∞

1

µr(Rn \ Ω)

�
Rn\Ω

φk,pj (y) dµr(y)

=
c(n, s) r2s

µr(Rn \ Ω) (|pj |2 − r2)s|pj |n
.

Now, we use the geometry of the fractional Poisson Kernel,
which gives a suitable c := c(n, s,ϖ) > 0 such that

Pϖ(0, pj) ≥
c
(
dist(0, ∂ϖ)

)s(
dist(pj , ∂ϖ)

)s (
1 + dist(pj , ∂ϖ)

)s |pj |n .
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Second proof of Fractional Kuran Theorem

Hence, since pj → p∗ ∈ ∂B∗ ⊆ ∂ϖ,

lim
j→+∞

Pϖ(0, pj) = +∞

and therefore

+∞ = lim
j→+∞

c(n, s) r2s

µr(Rn \ Ω) (|pj |2 − r2)s|pj |n

=
c(n, s) r2s

µr(Rn \ Ω) (|p∗|2 − r2)s|p∗|n

< +∞,

since p∗ ∈ Rn \Br, contradiction.
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Fractional Malmheden Theorem

A “geometric argument” to construct s-harmonic functions in a
ball with given “boundary” datum.{

(−∆)su = 0 in B1,

u = f in Rn \B1.
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Fractional Malmheden Theorem

To establish a fractional counterpart of Malmheden Theorem
one needs the following structural modifications:

the classical spherical averages are replaced by suitable
weighted spherical averages,

the geometric transformations involved are scaled in
dependence of the radius of each of these spheres.
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Fractional Malmheden Theorem

Setting:

fρ(x) := f(ρx),

La,b
f (x) := the affine function such that

La,b
f (a) = f(a) and La,b

f (b) = f(b),

Lf,e,ρ(x) := LQ
x/ρ
− (e),Q

x/ρ
+ (e)

fρ

(
x

ρ

)
.
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Fractional Malmheden Theorem

Recall:

Q±(e) = P + r±(e) e, r±(e) := −P · e±
√

D(e),

D(e) := (P · e)2 − |P |2 + 1.
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Fractional Malmheden Theorem

Let us also consider the following kernel for the ball Bρ.
Given s ∈ (0, 1), let

E(x, ρ) := cn,s
ρ (1− |x|2)s

(ρ2 − 1)s (ρ2 − |x|2)
,

where

cn,s :=
Γ(n/2) sin(πs)

π(n+2)/2
.
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Fractional Malmheden Theorem

Theorem (S. Dipierro, G. Giacomin, E. Valdinoci)

Let

u(P ) :=

� +∞

1

[�
∂B1

Lf,e,ρ(x) E(x, ρ) dHn−1
e

]
dρ.

Then, u is the solution of the fractional Dirichlet problem in
the ball: {

(−∆)su = 0 in B1,

u = f in Rn \B1.
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Fractional Malmheden Theorem

When P = 0, we have that D(e) = 1, r±(e) = ±1 and
Q±(e) = ±e. Hence,

Lf,e,ρ(0) = LQ0
−(e),Q0

+(e)

fρ
(0) = L−e,e

fρ
(0) =

f(ρe)

2
+

f(−ρe)

2
.

Also,
E(0, ρ) = cn,s

ρ

(ρ2 − 1)sρ2
=

cn,s
(ρ2 − 1)sρ

.
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Fractional Malmheden Theorem

Thus, the Fractional Malmheden Theorem reduces to

u(0) =

� +∞

1

[�
∂B1

Lf,e,ρ(0) E(0, ρ) dHn−1
e

]
dρ

=

� +∞

1

[�
∂B1

cn,s
(ρ2 − 1)sρ

(
f(ρe)

2
+

f(−ρe)

2

)
dHn−1

e

]
dρ

=

� +∞

1

[�
∂Bρ

cn,s
(ρ2 − 1)sρn

(
f(ω)

2
+

f(−ω)

2

)
dHn−1

ω

]
dρ

=

�
Rn\B1

cn,s
(|y|2 − 1)s|y|n

(
f(y)

2
+

f(−y)

2

)
dy

= cn,s

�
Rn\B1

f(y)

|y|n(|y|2 − 1)s
dy,

which is the Fractional Mean Value Theorem.
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Fractional Malmheden Theorem

Also, when s ↗ 1, the Fractional Malmheden Theorem
recovers the classical one.
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Proof of Fractional Malmheden Theorem

Once we “guess” the right formula, the proof relies on a series
of identities due to the geometry of the projections.
Sketch:

Start with the representation of the s-harmonic function
in B1 via the fractional Poisson Kernel.

This produces an integral outside B1, which can be
written in polar coordinates.

After some scaling, one can recognize the function E as a
weight for the integral.

Name whatever remains g and apply to it the spherical
change of variable.

Rearrange the terms and detect the cancellations coming
from the geometry of the problem.
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Fractional Schwarz Theorem

Theorem (S. Dipierro, G. Giacomin, E. Valdinoci)

Let n = 2 and

u(x) :=

� +∞

1

[�
∂B1

fρ
(
Qx/ρ(e)

)
E(x, ρ) dH1

e

]
dρ.

Then, u is the solution of the fractional Dirichlet problem in
the ball: {

(−∆)su = 0 in B1,

u = f in Rn \B1.
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Fractional Schwarz Theorem

When s ↗ 1, the Fractional Schwarz Theorem recovers the
classical one.

Also, let Σ be an arc in the circle ∂B1 ⊂ R2 and Σ⋆ be the
cone generated by Σ, i.e.

Σ⋆ :=

{
x ∈ Rn \ {0} s.t.

x

|x|
∈ Σ

}
.

Consider the solution of the fractional Dirichlet problem in the
ball with conical exterior datum:{

(−∆)su = 0 in B1,

u = χΣ⋆ in Rn \B1.

Do we have a geometric way to represent such a solution?
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Fractional Schwarz Theorem

Yes. Let Σ′
x/ρ be the projected arc of Σ on ∂B1 through the

point x/ρ.
Let |Σ′

x/ρ| be its length.
Then, the Fractional Schwarz Theorem yields that

u(x) =

� +∞

1
|Σ′

x/ρ| E(x, ρ) dρ.

That is, u is a superposition of scaled arc lengths, weighted by
a the kernel E .
In particular,

u(0) = |Σ|
� +∞

1
E(0, ρ) dρ =

|Σ|
2π

.
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|Σ|
2π

.
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Fractional Schwarz Theorem

Yes. Let Σ′
x/ρ be the projected arc of Σ on ∂B1 through the

point x/ρ.
Let |Σ′

x/ρ| be its length.
Then, the Fractional Schwarz Theorem yields that

u(x) =

� +∞

1
|Σ′

x/ρ| E(x, ρ) dρ.

That is, u is a superposition of scaled arc lengths, weighted by
a the kernel E .
In particular,

u(0) = |Σ|
� +∞

1
E(0, ρ) dρ =

|Σ|
2π
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Proof of Fractional Schwarz Theorem

Use the Fractional Malmheden Theorem with n = 2 and check
the algebra.
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Superposition Theorem

As a byproduct of the Malmheden Theorem and the Fractional
Malmheden Theorem, we see that an s-harmonic function is
the superposition of classical harmonic functions.
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Superposition Theorem

Theorem (S. Dipierro, G. Giacomin, E. Valdinoci)

For each ρ > 1 be ufρ be the unique solution to the classical
Dirichlet problem in the ball{

∆ufρ = 0 in B1,

ufρ = fρ on ∂B1.

Then, the solution of the fractional Dirichlet problem in the ball{
(−∆)su = 0 in B1,

u = f in Rn \B1.

can be written as

u(x) = |∂B1|
� +∞

1
ufρ

(
x

ρ

)
E(x, ρ) dρ.
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Fractional Harnack Inequality

As a consequence of the Superposition Theorem, we have a
new proof of the Fractional Harnack Inequality (see e.g.
M. Kaßmann’s thesis), with optimal constants:

Theorem

If u is s-harmonic in B1, then, for each r ∈ (0, 1) and x ∈ Br,

(1− r2)s

(1 + r)n
u(0) ≤ u(x) ≤ (1− r2)s

(1− r)n
u(0).

The constants above are optimal, and for s ↗ 1 they converge
to the optimal constants of the classical Harnack inequality in
Br for harmonic functions in B1.
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Fractional Harnack Inequality

As a consequence of the Superposition Theorem, we have a
new proof of the Fractional Harnack Inequality (see e.g.
M. Kaßmann’s thesis), with optimal constants:

Theorem

If u is s-harmonic in B1, then, for each r ∈ (0, 1) and x ∈ Br,

(1− r2)s

(1 + r)n
u(0) ≤ u(x) ≤ (1− r2)s

(1− r)n
u(0).

The constants above are optimal, and for s ↗ 1 they converge
to the optimal constants of the classical Harnack inequality in
Br for harmonic functions in B1.
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Proof of Fractional Harnack Inequality

Applying the Harnack inequality for classical harmonic functions to ufρ , we
have that

ufρ(0) ≤
(1 + |x|/ρ)n−1

1− |x|/ρ ufρ

(
x

ρ

)
.

From this, the Malmheden Theorem and the Fractional Malmheden
Theorem we obtain that

u(0) ≤ cn,s|∂B1|
� ∞

1

1

ρ(ρ2 − 1)s
(1 + |x|/ρ)n−1

1− |x|/ρ ufρ

(
x

ρ

)
dρ

= |∂B1|
� ∞

1

E(x, ρ) (ρ2 − |x|2)
ρ2 (1− |x|2)s

(ρ+ |x|)n−1

ρn−2(ρ− |x|) ufρ

(
x

ρ

)
dρ

= |∂B1|
� ∞

1

E(x, ρ) (ρ+ |x|)n

ρn(1− |x|2)s ufρ

(
x

ρ

)
dρ

= |∂B1|
� ∞

1

E(x, ρ) g(ρ, t)ufρ

(
x

ρ

)
dρ,

(13)

where t := |x| and

g(ρ, t) :=
(ρ+ t)n

ρn(1− t2)s
.
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Proof of Fractional Harnack Inequality
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� ∞
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Proof of Fractional Harnack Inequality

Since g(ρ, t) is decreasing in ρ and increasing in t, we have that

(1 + r)n

(1− r2)s
= sup

(ρ,t)∈[1,∞)×[0,r]

g(ρ, t).

Therefore, it follows from (13) that

u(0) ≤ |∂B1|
(1 + r)n

(1− r2)s

� ∞

1

E(x, ρ)ufρ

(
x

ρ

)
dρ =

(1 + r)n

(1− r2)s
u(x),

which establishes one side of the Fractional Harnack Inequality.
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Proof of Fractional Harnack Inequality

To prove the other side, use again the Harnack inequality for harmonic
functions:

ufρ

(
x

ρ

)
≤ 1 + |x|/ρ

(1− |x|/ρ)n−1
ufρ(0).

Therefore,

u(0) = cn,s|∂B1|
� ∞

1

ufρ(0)

ρ(ρ2 − 1)s
dρ

≥ cn,s|∂B1|
� ∞

1

1

ρ(ρ2 − 1)s
(1− |x|/ρ)n−1

1 + |x|/ρ ufρ

(
x

ρ

)
dρ

= cn,s|∂B1|
� ∞

1

(ρ− |x|)n−1

ρn−1(ρ2 − 1)s(ρ+ |x|) ufρ

(
x

ρ

)
dρ

= |∂B1|
� ∞

1

E(x, ρ) (ρ− |x|)n

ρn(1− |x|2)s ufρ

(
x

ρ

)
dρ.
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Proof of Fractional Harnack Inequality

To prove the other side, use again the Harnack inequality for harmonic
functions:
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ρ
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Therefore,
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1

ufρ(0)
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� ∞
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ρ
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� ∞
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x

ρ
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� ∞
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ρ
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Proof of Fractional Harnack Inequality

Hence, if

g1(ρ, t) :=
(ρ− t)n

ρn(1− t2)s
,

we have that

(14) u(0) ≥ |∂B1|
� ∞

1

E(x, ρ)g1(ρ, t)ufρ

(
x

ρ

)
dρ.

Since g1 is increasing in ρ, for all (ρ, t) ∈ [1,∞)× [0, r],

g1(ρ, t) ≥ g1(1, t) =
(1− t)n

(1− t2)s
=

(1− t)n−s

(1 + t)s
=: g2(t).

Since also g2 is decreasing, for all (ρ, t) ∈ [1,∞)× [0, r],

g1(ρ, t) ≥ g2(r) =
(1− r)n−s

(1 + r)s
=

(1− r)n

(1− r2)s
.
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Proof of Fractional Harnack Inequality

Hence, if
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(14) u(0) ≥ |∂B1|
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Proof of Fractional Harnack Inequality

Plugging this information into (14),

u(0) ≥ |∂B1|
(1− r)n

(1− r2)s

� ∞

1

E(x, ρ)ufρ

(
x

ρ

)
dρ ≥ (1− r)n

(1− r2)s
u(x),

which is the other side of the Fractional Harnack Inequality.
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Optimality of the constants in the Fractional
Harnack Inequality

Let ε ∈ (0, 1). Then,

uε(x) := cn,s

�
Bϵ((ϵ+1)e)

(1− |x|2)s

|y − x|n dy

is s-harmonic in B1.
Let x = −re for r ∈ (0, 1): we have that

uε(0)

uε(−re)
=

�
Bϵ((ϵ+1)e)

dy

|y|n�
Bϵ((ϵ+1)e)

(1− r2)s

|y + re|n dy

,

whence

lim
ϵ→0

uε(0)

uε(−re)
=

(1 + r)n

(1− r2)s
,

showing the optimality of the constants.
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Thanks a lot for your attention!
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